
ABSTRACT

TZENG, SZ-TING. Understanding the Interplay of Social Signals and Values in Norm Emergence.
(Under the direction of Munindar P. Singh).

Advancements in technology have the potential to seamlessly integrate Artificial Intelligence (AI)
into our daily lives. We consider the notion of an agent: software that engages in dynamic interactions
with its environment, other software, and human beings, fostering a symbiotic relationship. The
interconnectedness gives rise to a multiagent system (MAS) where humans and AI work together
in synergy to attain shared objectives. Given the involvement of humans, AI systems must be able
to reason over human behaviors, which are determined by a combination of internal attitudes and
external factors. Incorporating human values and considering multiagent dynamics in decision-
making would lead to a substantial improvement in the reliability and realism of AI systems. Besides
aligning decisions with values, humans have a fundamental need to comprehend and place trust in
the output of AI.

Another concern that arises from the growing size and dynamics of the MAS is adaptability.
Social norms define acceptable group conduct and governing agent behaviors in MAS. Norms can
arise through top-down imposition or bottom-up emergence. In both approaches, norms and the
environment are subject to change over time. The capacity for adaptation in AI systems becomes
crucial to minimize human intervention and effort in maintaining MAS.

In this dissertation, we aim to incorporate adaptability and explainability in AI systems by
integrating normative MAS with human factors. Initially, we concentrate on elements that help
to regulate human behaviors. Subsequently, we explore human factors associated with human
needs. This research includes four components: enforcing social norms with emotions, normative
information from social signals, social value orientation, and decision making and rationales based
on values. First, we introduce Noe, a framework that models the emotional responses of agents
to outcomes of interactions. Emotions, which are responses to internal or external events, can act
as a positive or negative reinforcement mechanism for specific behaviors. Second, we introduce
Ness, a framework that incorporates normative information from social signals to support norm
emergence. In addition to sanctions, normative information from soft signals like hints and messages
helps to regulate behaviors. Third, we present our Fleur framework, which incorporates the social
value orientation concept. Social value orientation defines individuals’ preferences over resource
allocations between themselves and others. Aligning with social values enables AI to make ethical
decisions and be responsible for human needs. Lastly, we describe Exanna , a framework that makes
decisions and reveals information in rationales based on agents’ values. Value-aligned explanations
ensure the AI system’s decisions are consistent with human values and societal expectations.
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CHAPTER

1

INTRODUCTION

Advancements in technology have seamlessly integrated Artificial Intelligence (AI) into our daily
lives. For example, Netflix’s recommendation system suggests videos based on users’ preferences;
virtual assistants on smart devices process and execute user requests in natural language; and,
virtual, augmented, and extended reality interfaces are fast becoming advanced (Singh and Singh
2013; Xu et al. 2023). In contrast to the past, software is now unrestricted by confined and isolated
environments. With cutting-edge technology, software interacts dynamically with its surroundings,
other software, and human beings (Kafalı et al. 2016). This symbiotic interaction leads to the
establishment of a multiagent system (MAS), where a synergistic relationship emerges between
humans and AI. Given the involvement of humans, it becomes crucial to incorporate human factors
while constructing contemporary AI systems. Specifically, AI systems must be able to reason over
human behaviors, which are determined by both internal attitudes and external factors. AI would
become more reliable and realistic by incorporating human values and considering the multiagent
dynamics in decision-making.

In Attribution theory, internal attributions explain human behavior with a focus on the character-
istics of a person (Gerace 2020). e.g., their personalities, abilities, and physical characteristics. On
the contrary, external attributions stress environmental or situational factors. e.g., social influences
and task difficulty. In the theory of basic human values, values characterize individuals and societies
(Schwartz 2012). Values explain behaviors and attitudes on a motivational basis. Specifically, human
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values define an individual’s intrinsic motivation and dominate how this individual thinks and
evaluates everything. We categorize values into two distinct categories: social values and individual
values. Social values refer to the values of a society, while individual values delineate the values
that characterize an individual. When a MAS becomes more interconnected, the complexity of
interactions increases drastically, and it becomes hard to model all the possibilities. Basing agent
decision making and MAS construction (Chopra and Singh 2018; Murukannaiah et al. 2020) on
human values provides a solution to handle unexpected situations while aligning with human needs.

In addition to aligning decisions with values, humans have a fundamental need to comprehend
and place trust in the output of AI. In other words, AI should be able to provide rationales for their
decisions to be trusted by humans. However, explaining without considering individual differences
may lead to information overload or privacy leaks among stakeholders.

Another concern that arises from the growing size and dynamics of the MAS is adaptability.
Social norms are crucial in MAS, defining acceptable group conduct and governing agent behavior
(Savarimuthu and Cranefield 2011; Hollander and Wu 2011). A MAS incorporating norms that
govern individual agents’ behavior becomes a normative MAS. These norms elicit sanctions as
responses to norm satisfaction or violation, e.g., penalties or rewards. Norms can arise through top-
down imposition or bottom-up emergence (Morris-Martin et al. 2019). Top-down norms, e.g., laws
and regulations, are costly and dictated by a central authority. Conversely, norms can also emerge
from agent interactions in a bottom-up manner. In both approaches, norms and the environment are
subject to change over time. The capacity for adaptation in AI systems becomes crucial to minimize
human intervention and effort in maintaining MAS.

Sanctions, one form of social signals, coordinate and regulate agent behaviors in MAS. As
humans evolved, social signals have emerged in the form of verbal messages or subtle hints,
transmitting normative information.

While humans’ decision-making includes internal and external attitudes, the other critical
human factor in decision-making is emotions. Emotions, which are responses to internal or external
events, can significantly impact decision-making and offer additional information in communication.
Herbert Simon, a Nobel laureate, emphasized that general thinking and problem-solving must
incorporate the influence of emotions (Simon 1967). Even more, emotions could be part of the
norms themselves. Integrating both norms and emotions is essential for building explainable and
trustworthy AI.

We aim to incorporate adaptability and explainability in AI systems by integrating normative
multiagent systems (MAS) with human factors. Initially, we concentrate on elements that help to
regulate human behaviors. Subsequently, we explore human factors associated with human needs.
In this dissertation, we study methods to empower a normative MAS with the capability to adapt to
dynamic environments and reason over human values.
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1.1 Motivations

As AI systems increasingly involve humans in the decision-making process, there is a growing
demand to consider human factors during their development. Varela et al. (2017) presents a con-
templative aspect of human experience, among which we focus on social, cognitive, and emotional
factors in this research.

1.1.1 Enforcing Social Norm with Emotions

In multiagent systems, norms and sanctions are often used to regulate agent behaviors while
maintaining their autonomy. However, sanctions in the real world are more subtle instead of harsh
punishment. For instance, the sanctions could be trust update or emotional expression and might
change one’s behavior (Nardin et al. 2016; Bourgais et al. 2019). At the basic level of Emotions’
Social Functions, emotions help individuals understand others’ preferences, beliefs, and intentions
and coordinate social interactions (Keltner and Haidt 1999).

Consider a pandemic scenario. During a pandemic, many stores limit the number of customers
in stores at once to protect their customers. A side effect of this practice is the long queue outside
the stores. While there is a social norm that people should line up to enter the stores, some can still
jump the queue to get services in advance. Suppose those who violate the norms would feel guilty
(self-directed emotion) and receive negative emotions from others (other-directed emotion). These
felt emotions will enforce the norm in stores.

The above scenario demonstrates the necessity of incorporating emotions when studying norm
enforcement.

1.1.2 Modeling Normative Information via Social Signals

Social signals, as reactions to norm satisfaction or norm violation, provide natural drivers for norm
emergence. When humans are evolved, social signals can be realized in three main ways: sanction,
tell, and hint. Hints or emotions, as forms of non-verbal communication, are usually not considered
in normative MAS. Normative information conveyed through a social signal also helps regulate
MAS behaviors. In addition, hints may enable the inference of unobservable mental states (Wu et al.
2018; Wu and Schulz 2020).

With tell, agents communicate direct normative messages of approval or disapproval. An
example of tell is verbal warning. An agent states clearly or indicates something may happen if
someone does something. While messages provide clear normative information, hints also give
subtle normative information for behavior. Upon receiving negative emotions after some actions,
we can infer that our behaviors do not fit into others’ expectations.
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Consider the following example.
David notices Becka’s suspicious symptoms and expresses some coldness near her. Upon

perceiving David’s negative attitude, Becka infers it is because she was sniffling near him in apparent
violation of safety guidelines. Becka feels guilty about wandering out while being symptomatic.
In addition, third parties who observe Becka’s behavior and the actions of others may alter their
behavior without directly having to be told.

The study of messages and hints as drivers of subtle social learning remains insufficient.
Specifically, soft signals like hints have not been studied as drivers of norm emergence.

1.1.3 Social Value Orientation

While social norms regulate human behaviors, humans evaluate social norms based on human values
and decide whether to comply or not. Social value orientation (SVO) is a psychological concept
that describes individual differences in how people place value preferences along the dimensions of
self and other. Consider there is a rare case scenario. During a pandemic, the authorities announce
a mask-wearing regulation and claim that regulation would help avoid infecting others or being
infected. Although Felix tests positive on the pandemic and prefers not to wear a mask, he also
cares about others’ health. If he stays in a room with another healthy person, Elliot, Felix will put
the mask on.

While values may differ among individuals, a reliable AI system must take into account the
values of its stakeholders to ensure making right decisions.

1.1.4 Decision and Rationale with Values

Two key aspects are essential for AI systems to earn human trust and be interpretable. Firstly, the
systems must align their decisions with human values at the micro level (Liscio et al. 2023), focusing
on the individual agent behaviors. While the macro level of values concerns the governance of MAS,
the micro level ensures that decisions reflect individual human values. Secondly, agents should
be capable of providing rationales for their decisions, enabling transparency and understanding
behind their choices (Winikoff et al. 2021; Ayci et al. 2023). Rationales serve as vital information
for making decisions and can aid in resolving social conflicts. However, determining the appropriate
extent of information an agent should provide raises crucial questions. On one side, overly detailed
rationales might become convoluted and fail to persuade, resulting in information overload. On the
other side, disclosing private information could lead to potential privacy breaches.

When humans are involved in the MAS, it becomes crucial for AI systems to make decisions
that extend beyond mere physical gain and, instead, harmonize with human values. As values guide
the motivations and decision making of agents, rationales aligned with values best justify their
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behaviors. In addition, values reflect different concerns in decision-making and conflict resolution
among agents. The above issues demonstrate the necessity of building rationales based on agents’
value.

1.2 Research Objective and Questions

Based on the aforementioned challenges, the research objective that we aim to achieve is to design
a framework that incorporates human factors and operates in dynamic environments, ensuring the
trustworthiness of AI systems.

In order to achieve our research objective, we seek to address the following questions.

RQemotion. How does modeling the emotional responses of agents to the outcomes of interactions
affect the norm emergence?

RQsignal. How does considering hints and normative messages in addition to sanctions influence
norm emergence?

RQSVO. How do the preferences for others’ rewards influence norm compliance?

RQrationale. Do value-aligned rationales enrich the social experiences of agents?

1.3 Contributions

1.3.1 Noe: Enforcing Social Norm with Emotions

To address RQemotion in Section 1.1.1, we propose a framework Noe that integrates emotions in the
normative reasoning process. Both norm satisfaction and violation elicit additional emotions, and
these subsequent emotions impact the enforcement of norms.

1.3.2 Ness: Modeling Normative Information via Social Signals

To address the problems in Section 1.1.2, we present an agent framework that integrates social
signals, encompassing sanctions, messages, and hints, to address our first research question RQsignal.
Our proposed framework Ness regards normative information from messages or hints as potential
rewards that can shape behaviors. Including those signals enables indirect social learning, which
resembles human behaviors in the real world.
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1.3.3 Fleur: Social Value Orientation

Little research on norm emergence has incorporated social preferences, which shape the behavior
of individuals when others are involved. To tackle the challenges in Section 1.1.3, we develop
Fleur , a framework for agents that considers social value orientation and social norms while making
decisions.

1.3.4 Exanna: Decision and Rationale with Values

For the challenges in Section 1.1.4, we propose Exanna, a framework that incorporates values in
decision-making, rationale generation, and reasoning over rationale. While some research empha-
sizes the interpretability of agent decisions for humans, Exanna agents provide rationales to both
agents and humans.

1.4 Organization

The dissertation is organized as follows.
Chapter 2 describes Noe and some related work. Noe shows how modeling the emotional

responses of agents to the outcomes of interactions affect norm emergence and social welfare.
Chapter 3 introduces Ness , a framework that models normative information from social signals

to support norm emergence. This chapter exhibits how agents with soft signals effectively avoid
undesirable consequences, which are negative sanctions and deviation from goals, and yield higher
satisfaction for themselves than baseline agents despite requiring an equivalent amount of social
signals.

Chapter 4 presents our Fleur framework to address RQSVO. Fleur incorporates the social value
orientation, which provides agents with different preferences over resource allocations between
themselves and others. This chapter shows how social value orientation enables better social
experience and robust norm emergence.

Chapter 5 describes Exanna , which addresses RQrationale in simulated pandemic environments.
This chapter demonstrates how value-aligned rationales enrich agents’ social experiences.

Chapter 6 concludes this research and proposes possible future work.
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CHAPTER

2

ENFORCING SOCIAL NORM WITH
EMOTIONS

2.1 Introduction

Humans, in daily life, face many choices at many moments, and each selection brings positive and
negative payoffs. In psychology, decision-making (Simon 1960) is a cognitive process that selects
a belief or a series of actions based on values, preferences, and beliefs to achieve specific goals.
Emotions, the responses to internal or external events or objects, can involve the decision-making
process and provide extra information in communication (Keltner and Haidt 1999; Schwarz 2000).
Social norms describe societal principles between agents in a multiagent system. While social norms
regulate behaviors in society (Singh 2013; Savarimuthu and Cranefield 2011; Kafalı et al. 2020),
humans and agents have the capacity to deviate from norms in certain contexts. For instance, people
shake hands normally but deviate from this social norm during a pandemic. Chopra and Singh
(2016) describe how social protocols rely on a foundation of norms though they do not discuss how
the appropriate norms emerge.

An agent that models the emotions of its users and other humans can potentially behave in a
more realistic and trustworthy manner. The decision-making process for humans or agents involves
evaluating possible consequences of available actions and choosing the action that maximizes
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the expected utility (Edwards 1954). Herbert Simon, one of the founders of AI, emphasized that
general thinking and problem-solving must incorporate the influence of emotions (Simon 1967).
Without considering emotions or other affective characteristics, such as personality or mood, some
compliance seems irrational (Argente et al. 2022). Humans’ compliance shows hints on rational
planning over their objectives (Keltner and Haidt 1999). Including emotion or personality in
normative reasoning makes these compliance behaviors explainable. Norms either are defined in
a top-down manner or emerge in a bottom-up manner (Savarimuthu and Cranefield 2011; Morris-
Martin et al. 2019). Works on norms include norm emergence based on the prior outcome of norms,
automated run-time revision of sanctions (Dell’Anna et al. 2020), or considering various aspects
during reasoning (Ajmeri et al. 2020, 2018). However, sanctions in the real world are often subtle
instead of harsh punishments. For instance, sanctions could be trust updates or emotional expression
and might change one’s behavior (Nardin et al. 2016; Bourgais et al. 2019). Kalia et al. (2019)
considered norm outcome with respect to emotions and trust and goals. Modeling and reasoning
about emotions and other affective characteristics in an agent then become important in decision
making and would help the agent enforce and internalize norms.

Accordingly, we propose Noe, an agent architecture that integrates decision-making with
normative reasoning and emotions. We investigate the following research question.

RQemotion. How does modeling the emotional responses of agents to the outcomes of interactions
affect norm emergence and social welfare in an agent society?

To address RQemotion, we refine the abstract normative emotional agent architecture (Argente
et al. 2022) and investigate the interplay of norms and emotions. We propose a framework Noe
based on BDI architecture (Rao and Georgeff 1991), norm life-cycle (Savarimuthu and Cranefield
2011; Frantz and Pigozzi 2018; Argente et al. 2022), and emotion life-cycle (Alfonso Espinosa
2017, pp. 62–64) (Marsella and Gratch 2009). To evaluate Noe , we design a simulation experiment
with various agent societies. We investigate how norms emerge and how emotions in normative
agents influence social welfare.

To make the problem tractable, we apply one social norm in our simulation and simplify the
emotional expression to reduce the complexity. Specifically, our Noe agents process emotions by
appraising norm outcomes. For the emotion model, we adopt the OCC model of emotions (Ortony
et al. 1988) in which we consider both emotional valence and intensity and assume violation of
norms yields negative emotions.

Organization. The rest of the paper is structured as follows. Section 2.2 discusses the relevant
related works. Section 2.3 describes Noe , including the symbolic representation and the decision-
making in Noe. Section 2.4 details the simulation experiments we conduct to evaluate Noe and
describes the experimental results. Section 2.5 presents the conclusions and the future directions.
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2.2 Related Works

Ortony et al. (1988) model emotions based on events, action, and objects. Marsella and Gratch
(2009) proposed a computational model of emotion to model appraisal in perceptual, cognitive,
and behavioral processes. Moerland et al. (2018) surveyed emotions in relation to reinforcement
learning. Keltner and Haidt (1999) differentiate the functional approaches and research of emotions
by four-level analysis: individual, dyadic, groups, and cultural. Briefly, emotions provide some
information for agents or people to coordinate social interactions. We take inspiration from these
works.

Savarimuthu and Cranefield (2011) proposed a life-cycles model for norms and discussed varied
mechanisms of norm study. Broersen et al. (2001) introduced the so-called Beliefs-Obligations-
Intentions-Desires (BOID) architecture on top of the Beliefs-Intentions-Desires (BDI) architecture
(Rao and Georgeff 1991), which further include obligation and conflict resolution. de Lima et al.
(2019) developed Gavel, an adaptive sanctioning enforcement framework, to choose appropriate
sanctions based on different contexts. However, these works do not consider emotions in the
decision-making process.

Argente et al. (2022) propose an abstract normative emotional agent architecture, which com-
bines emotion model, normative model, and Belief-Desire-Intention (BDI) architecture. Argente et
al. defined four types of relationships between emotions and norms: (1) emotion in the process of
normative reasoning, (2) emotion generation with norm satisfaction or violation, (3) emotions as
a way to enforce norms, (4) anticipation of emotions promotes internalization and compliance of
social norms. Yet, Argente et al. do not validate the interplay between emotions and norms with
their proposed architecture.

Bourgais et al. (2019) present an agent architecture that integrates cognition, emotions, emotion
contagion, personality, norms, and social relations to simulate humans and ensure explainable
behaviors. However, emotions are predefined and not generated via appraisal in this work.

von Scheve et al. (2006) consider emotion generation with norm satisfaction or violation. Specifi-
cally, an observer agent perceives the transgression of a norm of another, its strong negative emotions
(e.g., contempt, disdain, detestation, or disgust) constitute negative sanctioning of the violator. The
negative sanctioning then leads to negative emotions (e.g., shame, guilt, or embarrassment) in the
violator. Besides, compliance with the social norms can stem from the fear of emotional-driven
sanctions, which would lead to negative emotions in the violator. Such fear enforces social norms.
Yet, emotions are not part of the decision-making process in this work.
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2.3 Noe

We now describe the architecture, norm formal model, and decision-making.

2.3.1 Architecture

Noe integrates the BDI architecture (Rao and Georgeff 1991) with a normative model (Argente
et al. 2022; Frantz and Pigozzi 2018; Savarimuthu and Cranefield 2011) and an emotional model
(Alfonso Espinosa 2017; Marsella and Gratch 2009). A Noe agent assesses the environment,
including other agents’ expressed emotions, its cognitive mental states, and infer possible outcomes
to make a decision. Figure 2.1 shows the three components of Noe .

Norm Component

BDI Component Emotion 
Component

Identification

Instantiation

Normative 
Reasoning

Norm 
Fulfillment

Belief

Desire

Intention

Appraisal

Emotion

Decision-Making Process

E
licit E

m
o

tio
n

 E
ven

t

Figure 2.1: Noe architecture, representing and reasoning over beliefs, desires, intentions, emotions,
and norms.
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The normative component of Noe includes the following processes:

• Identification: the agent recognize norms from its norm base based on its beliefs

• Instantiation: activate norms related to the agent

• Normative reasoning process: the reasoning process makes decisions based on the beliefs, current
intention, self-directed emotions, other-directed emotions received from others, active norms, and
how the norm satisfaction or violation influences the world and itself The Noe agents then update
the intention based on the results of normative reasoning

• Norm fulfillment process: check if a norm has been fulfilled or violated based on the selected
action. The compliance or violation of a norm will then trigger an elicit emotion event that will
be appraised at the emotion component

The BDI component includes the following parts:

• Beliefs: form beliefs based on perceptions

• Desires: generate desires based on the beliefs

• Intention: the highest priority of desires to achieve based on the beliefs

• Action: select action based on the current intention, emotions, possible outcomes, and the
evaluation of violating or complying with norms, if any

The beliefs, desires, and intentions are mental states of Noe agents.

The emotional component includes the following processes:

• Appraisal: calculate the appraisal value based on the beliefs, desires, and norm satisfaction or
norm violation. In this work, we consider only norm satisfaction or norm violation

• Emotion: generate emotion based on the appraisal values (Marsella and Gratch 2009)

Figure 2.2 illustrates the interactions between agents in our simulation scenario.

2.3.2 Norm Formal Model

Social norms describe the interactions between agents in a multiagent system. We adopt Singh’s
(2013) representation, where a social norm is formalized as Norm(subject,object,antecedent,consequent).
In this representation, the subject and object represent agents, and the antecedent and consequent
define conditions under which the norm is activated or satisfied, respectively. This representation
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Figure 2.2: The interaction between Noe agents.

describes a norm activated by the subject towards the object when the antecedent holds, and the
consequent indicates if the norm was satisfied or violated.

Following Singh (2013), we consider three types of norms in Noe .

• Commitment (C): the subject commits to the object to bring out the consequence if the an-
tecedent holds. Consider Alice and Bob are queuing up in a grocery store. Alice and Bob
commit to keeping social distance during the pandemic, represented as C(Alice,Bob,during =

pandemic,social distance).

• Prohibition (P): the object prohibits the subject from the consequence if the antecedent holds.
Caleb, the grocery store manager, prohibits Bob from jumping the queue while lining up in that
store, represented as P(Bob,Caleb,when = line up;at = grocery store, jump).

• Sanction (S): same as commitment or prohibition, yet the consequence would be the sanctions.
Sanctions could be positive, negative, or neutral reactions to any norm satisfaction or violation
(Nardin et al. 2016). If Bob breaks the queue, he receives negative sanctions from Alice, repre-
sented as S(Bob,Alice, jump,negative sanctions). Negative sanctions could be physical actions,
e.g., scolding someone, or emotional expression, e.g., expressions of disdain, annoyance, or
disgust.

To simulate the norm emergence and enforcement in human society, we include emotions into
the decision-making process since, by nature, humans do not always act rationally in terms of
utility theory. Here we formalize emotions with Ei(target, intensity,decay) indicating agent ai has
emotion e toward the target with intensity and decay value. An example of the prohibition case
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would be, Bob would not jump the queue if Alice is angry, represented as P(Bob,Alice,Bob ≻
Alice∧EAlice = angry, jump).

We model the emotional response of agents with triggered emotions from norm satisfaction, or vi-
olation (Argente et al. 2022). Here we represent the elicited emotions with Elemname(Aexpect ,Areal,Em1,Em2)|Em1,Em2 ∈
E;Aexpect ,Areal ∈ A where A is a set of actions. E is a set of emotions, and Em1 and Em2 are the
emotions triggered by norm satisfaction and violation accordingly. If the Aexpect is equal to the Areal ,
a norm has been fulfilled, and Em1 was elicited. Ap(belie f s,desires,Elem) represents the appraisal
function.

2.3.3 Decision-Making

Schwarz (2000) addresses the influence of moods and emotions at decision making and discusses the
interplay of emotion, cognition, and decision making. Specifically, the aspects include pre-decision
affect, post-decision affect, anticipated affect, and memories of past affect. In our model, we include
the pre-decision affect into the decision-making process. With pre-decision affect, people recall
information from memories that match their current affect (Schwarz 2000). For instance, people in
a sad emotion or interacting with hostile people tend to overestimate adverse outcomes and events.

In our model, emotions serve as mental objects and an approach to sanctioning. We consider
emotions as intrinsic rewards from agents’ internal state in contrast to physical rewards from the
environment. We adopt the OCC model of emotions (Ortony et al. 1988), in which we consider
emotional valence and intensity. We formulate emotions with simple values where positive values
indicate positive emotions and larger values indicate higher intensity. A mood is a general feeling
and not a response to a specific event or stimulus compared to emotions. Therefore, we consider
emotions but not mood. Noe agents’ appraisal function considers norm satisfaction and violation
only. The agents are aware of other agents’ expressed emotions in the same place. In this work,
we assume that agents express true and honest emotions and can correctly perceive the expressed
emotions. In other words, felt emotions are equal to expressed emotions. Another assumption is that
emotions are consistent with the notions of rational behavior.

Algorithm 1 displays the decision loop of our model. At the beginning of the simulation, all
agents are initialized with certain desires, and during the run, an intention would be generated by
prioritizing desires with the agent’s beliefs. When choosing the next move with line 5 in Algorithm 1,
the agent chooses the one with maximum utility from all available actions. Algorithm 2 details the
action selection. The decision takes the agent’s beliefs, current intention, and possible consequences
into accounts. While norms are activated with the beliefs, the agent would further consider emotions
and cost and possible consequences with norms at line 8 in Algorithm 2. For instance, if people
violate some social norms, they may be isolated from society. Regarding the influence of emotions,

13



people may overestimate the negative outcomes when they are in the negative emotion and tend to
comply with the norms.

Algorithm 1: Decision loop of a Noe agent
1 Initialize one agent with its desires D;
2 for t=1,T do
3 Observe the environment (including the expressed emotions from others Earound) and

form beliefs bt ;
4 Generate intention I based on bt and D;
5 at = ActionSelection(bt , I, D);
6 Execute action at ;
7 Elicit self-directed emotions Esel f from agent itself based on if action at fulfills a norm;
8 Self-sanction with Esel f ;
9 Observe the environment (including the performed actions at_other of other agents) and

form beliefs bt+1;
10 Elicit other-directed emotions Eother for observer agents based on if action at_other

fulfills a norm;
11 Sanction others with Eother;
12 end

Algorithm 2: Action selection
Input: beliefs bt , intention I, desires D
Output: Action at

1 Function Action Selection:
2 Earound ⊂ bt ;
3 for each a in ACTIONS(bt) do
4 Activate norms N with beliefs bt and a;
5 if N =∅ then
6 at = MAXa(RESULT(bt , intention, a))
7 else
8 at = MAXa(RESULT(bt , intention, a, N) × amplifier(Earound) )
9 end

10 end
11 return at

12 return
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2.4 Evaluation

We evaluate Noe via a line-up environment where agents form queues to receive service. We detail
the environment in Section 2.4.1.

2.4.1 Line-Up Environment

Figure 2.3 shows the line-up environment. We build this line-up environment using Mesa (Masad
and Kazil 2015), a Python-based framework for building, analyzing, and visualizing agent-based
models.

Grocery Store

Waiting to get service

Home
Home

Home
Home

Figure 2.3: Simulation scenario. Agents move between their homes and the grocery store. The
store has a capacity limit of eight customers at one time. As a result, other agents must line up
outside the store to get service.

The line-up environment includes two shared locations—home and grocery stores. The agents
move between home and grocery stores to get food. We consider one social norm in the line-up
environment: agents are expected to line up to enter the grocery store. To simulate real human
reactions to norm violations, we refer to a social psychology experiment (Milgram et al. 1986). In
the line-up environment, we model defensive reactions of people in the queue as negative emotions
toward those who jump the queue by barging in ahead of someone already in the queue. Conversely,
people show positive emotions toward those who stay in the queue.

We initialize the agents with the following parameter values:

• Health (Integer value from 0–100): When the health value reaches zero, the agent is marked as
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deceased and unable to act. The health value decreases by 1 unit at each step.

• Deceased (Boolean: True or False): set as True when an agent runs out of health.

• Emotion (Integer value): simplified with numerical values where positive values indicate positive
emotions and negative indicate negative emotions. The emotions come along with a duration.
Default at 0.

• Number of food packets owned (Integer value from 0–15): once obtained food from the stores,
agents would be able to restore its health value via consuming food anywhere.

• Food expiration day (Integer value from 0–15): once the agent gets food packets, we update the
expiration day with 15. The expiration day decreases by 1 unit at each step. Food expires once
the expiration day reaches 0. Default at 0.

• Beliefs: the perceived and processed information from the world, including other agents’ ex-
pressed emotions.

• Desires: desired states, including have food and wandering.

• Intention: the highest priority of desires to achieve at a specific time. When the agent’s health is
lower than the threshold, 80% of the health, the agent sets its intention as get food ; otherwise,
the agent sets its intention as wandering.

When an agent runs low on stock, it has a higher probability of moving to a grocery store. The
grocery store can provide food packets to eight agents in one time step. While waiting in line to
get food, the agent could either stay in the line or jump ahead in the line to get food in less time.
Jumping the line may increase other agents’ delay in getting food packets. Those who witness
the violation would then cast negative emotions, further interpreted as anger or disdain, triggered
by that behavior. To simplify the simulation, we presume the anticipated affects (Schwarz 2000)
with: (1) receiving negative emotions triggers negative self-directed emotions such as shame and
guilt; (2) complying with norms leads to positive or neutral emotions; (3) violating norms leads
to negative or neutral emotions. The intensity of emotions triggered each time is fixed, but the
values of emotions can add up. Each triggered emotion lasts 2 steps. At each step, the duration and
intensity of emotion decrease by 1 as decay. A simple assumption here is that people in a bad mood
would trigger stronger emotions in response to a non-ideal state. Note that at the beginning of the
simulation, we initialize the agent society with health in normal distribution to avoid all agents
having the same intention at the same time.
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2.4.2 Agent Types

To answer our research question and evaluate Noe , we define three agent societies as baselines. We
describe the agents societies below:

Obedient society. Agents in an obedient society always follow norms.

Anarchy society. Agents in an anarchy society jump lines when they cannot get food.

Sanctioning society. Agents in the sanctioning society jump lines considering the previous experi-
ence of satisfying or violating a norm. Agents sanction positively or negatively based on norm
satisfaction or violations directly and comply with enforced norms.

Noe society. Agents in the Noe society jump lines considering the previous experiences of sat-
isfying or violating a norm, current emotional state of the other agents, current self emotional
state, and estimated outcome of satisfying or violating a norm. Noe agents who observe norm
satisfaction or violations would appraise the norm outcomes and trigger emotions to sanction the
actor agent.

Table 2.1 summarizes the characteristics of the agents in the four societies.

Table 2.1: Characteristics of the various agent societies.

Agent Type Violation allowed Sanctioning Emotions involved

Obedient society ✘ ✘ ✘

Anarchy society ✔ ✘ ✘

Sanctioning society ✔ ✔ ✘

Noe society ✔ ✔ ✔

2.4.3 Hypotheses and Metrics

To address our research question RQemotion on emotions and norm emergence, we propose three
hypotheses:

H1 (Norm satisfaction): Norm satisfaction in Noe agent society is higher compared to the baseline
agent societies.

H2 (Social welfare): Noe agent society yields better social welfare compared to the baseline agent
societies.
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H3 (Social experience): Noe agent society yields a better social experience compared to the
baseline agent societies.

To evaluate H1 on norm satisfaction, we compute one metric, M1 (Cohesion): Percentage of
norm satisfaction.

To evaluate H2 on social welfare, we compute two metrics: (1) M2 (Deceased): Cumulative
number of agents deceased; (2) M3 (Health): Average health of the agents. To evaluate H3 on social
experience, we compute one metric, M4 (Waiting time): Average waiting time of agents in the
queues.

To test the statistical significance of H1, H2, and H3, we conduct the independent t-test and
measure effect size with Glass’ ∆ for unrelated societies (Grissom and Kim 2012; Glass 1976). We
adopt Cohen’s (Cohen 1988, pp. 24–27) descriptors to interpret effect size where above 0.2, 0.5, 0.8
indicate small, medium, and large.

2.4.4 Experimental Setup

We run each simulation with 400 agents and queue size 80 for 3,000 steps. We choose a relatively
small number of agents to reduce the simulation time while our results are stable for a more
significant number of agents. The simulation stabilizes at about 1,500 steps, but we keep extended
simulation steps to have more promising results. Table 2.2 lists the payoffs applied in our simulation.

We present the results with a moving average of 100 steps. We choose this size of running
window to show the temporal behavior change in a small sequence of time. With a larger size, the
running window may alleviate the behavior change. To minimize deviation from coincidence, we
run each simulation with 10 iterations and compute the mean values.

Table 2.2: Payoff table.

Component Type Reward

Deceased Extrinsic –500
Norm compliance & positive emotion Intrinsic 1
Norm violation & negative emotion Intrinsic –1

2.4.5 Experimental Results

In this section, we describe the simulation results comparing the three baselines and Noe agents.
Table 2.3 summarizes the simulation results and the statistical analysis for our hypotheses.
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According to Table 2.3, we see that Noe generate better cohesion and fewer deceased agents
than baselines (p < 0.01; Glass’ ∆ > 0.8). The null hypothesis corresponding to H1 is rejected. Note
that we do not consider the cohesion metric for the obedient agent society here since agents in the
obedient society are always compliant. However, Noe also yields the worst social experience where
the low waiting time is a desirable state (p < 0.01; Glass’ ∆ > 0.8).

Table 2.3: Comparing Noe with baseline societies on various metrics and their statistical analysis
with Glass’ ∆ and p-value. p is p-value from t-test.

Obedient Anarchy Sanctioning Noe

C
oh

es
io

n X̄ – 0.22 0.88 0.99
p 0.32 < 0.01 < 0.01 –
∆ 0.19 102.43 13.67 –

D
ec

ea
se

d X̄ 55.30 81.60 169.30 54.00
p < 0.01 < 0.01 < 0.01 –
∆ 0.65 3.10 15.53 –

H
ea

lth X̄ 79.27 79.50 86.26 79.00
p 0.52 0.46 8.45 –
∆ 0.18 0.21 3.34 –

W
ai

tin
g

tim
e X̄ 8.95 5.45 2.55 8.95

p 0.98 < 0.01 < 0.01 –
∆ 0.01 40.82 76.68 –

H1 Norm Satisfaction

Figure 2.4 displays the cohesion, the percentage of norm satisfaction, in the baseline agent societies
and the Noe agent society. We find that the percentage of norm satisfaction in the Noe agent society,
average at 99% and p-value < 0.01, is constantly higher than the sanctioning agent society, average
at 88% and p-value < 0.01 and Glass’ ∆ > 0.8. The sanctioning agent society learns to comply with
the norm as time goes by. The Noe agent society does sanction as well. Yet, considering emotions
and the possible outcome makes Noe agent society enforce the norm faster than the sanctioning
agent society. Specifically, Noe agent society enforces the norm at about 100 steps while sanctioning
agent society at 1,500 steps.
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Figure 2.4: Simulation result: average cohesion. Comparing average cohesion (M1) yielded by
Noe and baseline agent societies.

H2 Social Welfare

Figure 2.5 compares the average number of deceased in the obedient, anarchy, sanctioning, and
Noe agent societies. Refer to Figure 2.4, sanctioning agent society learns the norm via positive
and negative sanctioning from norm satisfaction and violation. However, the agents in that society
do not consider the possible severe consequences and cause compliant agents to die in the queue.
When the number of deceased reaches the threshold, the simulation stabilizes. Therefore, no more
agent from the sanctioning agent society dies after the threshold. On the contrary, Noe agent society
sanctions and considers possible outcomes of norm satisfaction and violation, therefore learning the
norm and avoiding unacceptable consequences.

Figure 2.6 compares the average health of the agents in the obedient, anarchy, sanctioning, and
Noe agent societies. The sanctioning agent society yields higher health State, with a mean at 86.26,
but at the expense of more deaths. The rest of the agents then be able to remain in high health.

H3 Social Experience

Figure 2.7 compares the average waiting time the agents spend in a queue at the grocery store in the
obedient, anarchy, sanctioning, and Noe agent societies. The Noe agent society learns the norm fast
and remains the same waiting time in the queue. However, some agents in the sanctioning agent
society take advantage of those who learn norms faster than themselves. Therefore, many agents die
during the learning process, and the simulation stabilizes. In Figure 2.7, the obedient agent society
shares the same trend with Noe agent society since emotions enforce the line-up norm.

Combining the results for H1 and H2 and H3, we note that while sanctioning enforces norms, a
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Figure 2.5: Simulation result: average number of deceased. Comparing average number of deceased
(M2) in Noe and baseline agent societies.

Figure 2.6: Simulation result: average health value. Comparing average health value (M3) in Noe
and baseline agent societies.

combination of sanctioning and emotions enforce norms better. Specifically, having emotions as
amplifiers of outcomes yield higher norm satisfaction compared to our baselines. The results also
indicate that, first, sanctioning agents that consider only norm violation or norm satisfaction may
bring out worse social welfare compared to Noe that considers both norms and their consequences.
Second, although Noe agents remain relatively high waiting time in the queues, the number of
deceased is lower than the baselines. Note that the sudden drop of deceased number or increase
of health value for sanctioning agents resulted from the stabilization of that society. Third, Noe
agents stay in positive emotions during the simulation while sanctioning agents start from negative
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Figure 2.7: Simulation result: average waiting time of agents in queues. Comparing average waiting
time (M4) in Noe and baseline agent societies.

emotions and eventually achieve the expected behaviors.

2.5 Discussion and Conclusion

We present an agent architecture inspired by the norm life-cycle (Argente et al. 2022), BDI architec-
ture (Rao and Georgeff 1991), and emotion life-cycle (Alfonso Espinosa 2017; Marsella and Gratch
2009) to investigate how emotions influence norm emergence and social welfare. We evaluate
the proposed architecture via simulation experiments in an environment where agents queue up
to receive service. Our simulations consider two characteristics of an agent society: sanctioning
and emotions that participate in action selection and arise from evaluating selected action. The
experiments show that incorporating emotions enables agents to cooperate better than those who do
not.

In our agent architecture, we assume that agents can recognize others’ emotions. However,
we acknowledge that emotion recognition is a challenging task (Barrett et al. 2019). Whereas
recent works in AI have focused on emotion recognition through facial expressions and emotion
recognition using wearables, it is worth noting that there is little agreement in modeling emotions in
the psychology community (Barrett et al. 2019; Marín-Morales et al. 2018; Marsella et al. 2010).

Murukannaiah et al. (2020) discuss many shortcomings of current approaches for AI ethics,
including taking the value preferences of an agent’s stakeholder and other agents’ users, learning
value preferences by observing the responses of other agents’ users, and value-based negotiation.
Incorporating these aspects in Noe is an interesting future direction.
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As a future extension of current work, we intend to distinguish between emotions in Noe
rather than representing them through emotional valence. This extension aims to enhance the
depth of information available for understanding value preferences. We are also contemplating the
incorporation of a variety of personalities in upcoming studies to yield diverse appraisal outcomes.
In this work, Noe agents are assumed to express true and honest emotions. However, emotions can
also serve as a tool to influence, persuade, or deceive others in an adversarial context. It would be
crucial to identify and model these contradictions while humans are in the loop.
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CHAPTER

3

MODELING NORMATIVE INFORMATION
VIA SOCIAL SIGNALS

3.1 Introduction

Social norms characterize collective and acceptable group conduct and regulate agent behavior.
Norms may be imposed top-down (as legal norms are) or emerge bottom-up (when agents learn
acceptable behaviors from each other) (Savarimuthu and Cranefield 2011). Our interest is in the
latter while accommodating the former. A norm emerges in a society when a substantial majority of
its agents the same action in the same circumstance (Morris-Martin et al. 2019; Savarimuthu and
Cranefield 2011).

We posit that the emergence of norms is driven by three kinds of social signaling by one agent
to another in response to the first agent observing certain behaviors by the second agent in certain
situations: (1) Sanctions or punishments or rewards (Nardin et al. 2016) for observed behaviors,
(2) Tell or direct normative messages or explicit communications of approval or disapproval
(Andrighetto et al. 2013) of observed behaviors, and (3) Hint or implicit signals conveying a positive
or a negative attitude toward an observation.

Example 1 Sanction. Becka is symptomatic with COVID-19. Alice meets Becka in a cafe and
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notices Becka’s symptoms. Alice reports the violation of healthcare guidance, leading to Becka

being required to undergo compulsory quarantine at designated facilities.

Example 2 Tell. Charlie notices Becka’s suspicious symptoms and begins to worry about his safety.

He tells Becka that roaming in public while symptomatic will be required to undergo compulsory

quarantine.

Example 3 Hint. David notices Becka’s symptoms and expresses some coldness near her. Becka

interprets David’s negative attitude as a reaction to her apparent violating safety guidelines by

sniffing near him. Becka feels guilty for wandering out while being symptomatic and is anxious

about the possibility of being reported.

The above social signals convey normative information from which Becka learns her behavior
was inappropriate. And, third parties who observe Becka’s behavior and these signals may alter
their behavior without directly having to be told.

Messages and hints drive subtle forms of social learning, as in human societies, but have not been
adequately studied. Hints are soft signals that have not been studied as drivers of norm emergence.
We investigate the following research question.
RQsignal. How does considering hints and normative messages in addition to sanctions influence
norm emergence?

To address RQsignal, we define two expressions of normative information: explicit normative
message (Andrighetto et al. 2013) and implicit hint as information.
Contributions. We propose Ness (for Norm Emergence through Social Signals), a framework that
accommodates norms imposed top-down and enables norm emergence. Ness includes normative
information from three types of social signals; that information facilitates social learning.

We evaluate Ness experimentally via a simulation of a pandemic scenario. We examine societies
characterized by three distinct signal types: sanction, tell or direct messaging, and hint. Our results
demonstrate that introducing normative information communicated via hints and direct messaging
enables faster norm emergence, avoids undesirable consequences such as negative sanctions and
deviation from goals, and yields higher satisfaction overall in a society. Especially, in societies
with low vaccination rates, individuals learn that engaging in self-isolation is praiseworthy and
short-term compromises prevent major penalties.
Organization. Section 3.2 introduces key concepts of Ness and describes how agents’ decision-
making work in Ness. Section 3.3 details the pandemic simulation we create to evaluate Ness.
Section 3.4 presents results from our simulation experiments. Section 3.5 discusses other relevant
research. Section 3.6 concludes with a summary of our findings, limitations, threats to validity, and
future directions.
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3.2 Ness

A Ness agent selects actions considering their goals, environmental norms, and social signals
(Argente et al. 2022; Frantz and Pigozzi 2018; Savarimuthu and Cranefield 2011; Singh 1994;
Marsella and Gratch 2009).

A Ness agent learns from observations. Following Example 2, on receiving Charlie’s message,
Becka learns that she may be reported to local authorities if she does not self-isolate. In Example 3,
Becka may have misread David’s coldness as directed at her.

When making decisions, a Ness agent activates those norms related to itself based on its
knowledge. The normative reasoning process enables Ness agents to reason over the possible
outcome of norm compliance or violation. After executing a chosen action, the agent checks if
a norm has been fulfilled or violated. The compliance and violation of norms then trigger social
signals.

3.2.1 Key Concepts

We now introduce the key concepts in Ness .

Goal is a condition that an agent wants to achieve. The outcome of a goal has a binary value,
achieved or not, after performing a selected action.

Norm defines the relationship between an agent on whom the norm is focused and an agent with
respect to whom the norm arises. An agent can invest effort on its norm or has its freedom curtailed
by another agent. A norm can either be satisfied or violated when the consequent holds or not,
respectively.

Sanction refers to a positive, negative, or neutral reaction directed from one agent toward another.
A sanction is typically in response to a norm satisfaction or norm violation.

Tell or normative message specifies the cause and the effect. The effect describes a potential
reward or punishment. For example, Charlie’s specification in Example 2 includes whether a norm
is satisfied or violated and why.

Hint is an indirect clue that an agent expresses toward another agent to guide its behavior. A hint
requires the receiver to infer the intended meaning. We model hints as subtle soft signals triggered
by norm satisfaction or violation.
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Reward Shaping refers to supplemental or “shaping” rewards (in addition to those from the
environment) provided to agents to move toward a certain goal or to encourage selecting a certain
action in a certain set of states (Marom and Rosman 2018). Here, we consider normative information
from tell or hint as advice on potential soft sanctions with different levels of certainty. That is,
signals—tell and hint—are inferred as positive or negative rewards to encourage or discourage
taking specific actions.

3.2.2 Decision-Making

An agent’s behaviors include acting to maximize its payoff, and giving social signals.

Action selection An agent selects an action that satisfies its goal and maximizes its actual and
possible payoff. In the examples of Section 3.1, Becka decides whether to go to the cafe depending
on her goals and her understanding of norms.

Social signal expression An agent observes other agents’ behaviors and expresses social signals:
sanctions, messages, or hints if the behaviors conflict with norms. In Example 1, Alice sanctions
Becka based on a healthcare guidance of staying at home when symptomatic. In Example 2, Charlie
sends Becka a direct message. In Example 3, David’s coldness toward Becka shows his disapproval.

Reward Shaping A message or hint serves as a look-ahead advice on what will happen after
a specific action. A shaping reward can be defined as r′ = r+F where r is the original reward
function, and F is the shaping reward function. With messages or hints, F defines the difference of
potential values. Here, Φ is a potential function that gives hints on states. κ defines the certainty of
potential reward from the knowledge or information.

F(s,a,s′,a′) = γΦ(s′,a′)κ−Φ(s,a) (3.1)

3.3 Simulation

We evaluate Ness via a simulated pandemic scenario where how agents behave influences the
spread of a pandemic. We built our pandemic environment using Mesa (Masad and Kazil 2015), a
Python-based simulation framework. Our focus is not to model the realism of pandemic spreading
but to investigate how social signals influence norms. Agents in the simulation use reinforcement
learning to learn the relationship between objectives and normative behaviors.
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3.3.1 Pandemic Scenario

In the simulated environment, an agent moves between four places: home (unique for each agent),
park, cafe, and (vaccination) clinic. An agent has a goal to rest, hike, shop, be_vaccinated, and
selects actions from {stay_home, visit_park, visit_cafe, visit_clinic}. Any two agents present at the
same place may interact with equal probability at each step. Agents perceive each other’s signals,
and all expressed signals are genuine and honest.

At each step, an agent observes its environment and moves based on factors such as based on
which an agent learns where to move include death, goal satisfaction, sanctions, messages, hints, and
norm satisfaction or violation. After all agent move, they evaluate the behavior of, and accordingly
signal, each other. An agent who witnesses another agent being signalled can learn from it.

3.3.2 Disease Model

Our disease model is simplified from the Susceptible-Exposed-Infected-Recovered (SEIR) model
(Yang and Wang 2020; Annas et al. 2020) and captures the effectiveness of vaccines. As shown in
Figure 3.1, each agent begins in a healthy state. Upon encountering an infected agent (not shown), it
transitions to the asymptomatic phase of the disease, showing no symptoms despite being infected.
As the symptoms progress, an agent becomes mildly symptomatic, then critically symptomatic, and
in the worst-case, deceased. Vaccination offers protection by reducing the probability that agents
can become infected and advance toward critical symptomatic or deceased. Home-based recovery is
the primary treatment during the pandemic.

We base the probabilities of how COVID-19 evolves on Poletti et al. (2020). We set the infection
probability to 80% and the effectiveness of vaccination at 50% to represent a more infectious variant
and speed up the simulation. Apart from vaccination, we set the probability of the symptoms to
progress as Figure 3.1. The intuition is that each infected person provides an opportunity for the
symptoms to progress to the next phase or recover.

We assume home stay improves recovery from infection. We write “isolation” when home stay
is voluntary and “quarantine” when it is forced. We set a 50% probability to sanction those who
exhibit mild symptoms and an 80% probability to sanction those who exhibit critical symptoms but
are not isolated. Table 3.1 shows partial observability of the health states of others (e.g., a healthy
person who has watery eyes because of pepper may be perceived as sick (Mild)).

3.3.3 Social Norm

We initialize the environment with a social norm that healthy agents prohibit infected agents from
staying in a public space. We frame the norm as a prohibition as below.
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Table 3.1: Imperfect observation of another’s health state.

Actual
Belief

Healthy Mild Critical

Healthy 0.80 0.10 0.10
Asymptomatic 0.50 0.50 0.00
Mild 0.30 0.60 0.10
Critical 0.10 0.30 0.60

Healthy Asymptomatic

Mild

Critical Deceased

0.8α

0.36α

0.2β

0.01α

0.1β

0.05β 0.2α

Figure 3.1: Disease model with state transition probabilities. The transition for healthy agents
applies when coming in contact with those who are infected. α and β parameterize the transition
probabilities for vaccination and home rest, respectively. In our study, α = 0.5 means vaccinated,
and α = 1.0 means not vaccinated. And, β = 2.0 means at home and β = 1.0 means not at home.
For example, the edge weight from Mild to Critical can be read as 0.01 for vaccinated agents and
0.005 for unvaccinated agents. The probability of remaining in the state is 1− the probability of
evolving to the next state.

norm type = {Prohibition},
subject = {Infected_Agent},
object = {Healthy_Agent},
antecedent = {obs_health =[MILD , CRITICAL]},
consequent = {loc=[PARK , CAFE , CLINIC ]}

When the antecedent and consequent both hold, the prohibition is violated, and a sanction is given to
the subject. The sanction is a numerical reward to the agent who violates the prohibition. When an
agent receives normative information from others indicating or stating this prohibition, it considers
the sanction a potential reward Φ. According to the signal type, the agent constructs the shaping
reward.
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3.3.4 Normative Information Communication

We formalize normative information via conditionals indicating that the stated consequent will be
brought out when the presented antecedent holds. For example:

sender = {Observer_Agent},
receiver = {Actor_Agent},
info type = {MESSAGE},
antecedent = {obs_health=CRITICAL ,loc=CAFE},
consequent = {PUNISHMENT}

3.3.5 Types of Societies

We consider societies based on the social signal types: sanctioning, telling or direct messaging, and
providing hints.

Baseline 1: PRIMITIVE society

Agents apply no social signals and act solely based on goal satisfaction (payoffs).

Baseline 2: PENALTY society

Agents obtain negative sanctions for violating a social norm, as in Example 1. Healthy agents may
punish infected agents who enter a public space by directing them to quarantine. In the next few
timesteps, a punished agent’s position is changed to home regardless of its wishes.

Baseline 3: EMOTE society

This society is a variant of Ness but without shaping rewards. With some social norm in mind,
agents who violate or satisfy the social norm receive a signal, such as expressed emotions, from
others. These agents may experience guilt or pleasure based on norm violation or satisfaction.
EMOTE is adapted from (Tzeng et al. 2021). Infected agents who wander in a public space may
receive expressed emotions and feel bad about their norm violation and may be forced to quarantine
at home by healthy agents.

Baseline 4: TELL society

This society is a variant of Ness but without the hint part, as in Example 2. Agents learn social
norms and convey normative messages upon witnessing a norm violation. The normative message
is adapted from (Andrighetto et al. 2013) and includes what sanctions an agent will receive if it
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violates a norm. Healthy agents interacting with infected agents in a public space convey the social
norm of staying away from public spaces to the infected agents. Also, infected agents in a public
space may be forced to quarantine by healthy agents.

Ness: Hint Society

A society with our proposed agents. Ness agents learn norms from social signals of sanction and
hint. In the simulation, infected agents who wander in public spaces receive hints from healthy
agents via which they infer the normative information about staying away from healthy agents. This
information from the hint signal provides shaping rewards to agents to learn norms. Ness agents
may also experience pleasure or guilt based on norm violation or satisfaction. In addition, as in
PENALTY, EMOTE, and TELL, infected agents in a public space may be forced to quarantine at
home by healthy agents.

3.3.6 Metrics

We compute six measures to evaluate Ness. MHealthy, MInfected, MDeceased, MInfections, MVaccinated,
and MGoal help identify the consequences of agents’ behaviors or norm emergence. Moreover,
these measures provide insights into why specific norms emerge. MHome and MQuarantine yield the
percentage of self-isolation behaviors.

MHealthy Percentage of agents who are healthy.

MInfected Percentage of agents who are infected.

MDeceased Percentage of agents who are deceased.

MInfections Average number of infections.

MVaccinated Percentage of agents who are vaccinated.

MHome Percentage of infected agents who stay home.

MQuarantine Number of agents forced to quarantine at home. This measure maps to the sanction
signal type.

MGoal The average goal satisfaction among agents.

A norm emerges when the proportion of agents following the same behavior exceeds a threshold.
We consider 90% as the threshold (Delgado 2002).
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3.3.7 Hypotheses

We evaluate three hypotheses. For each, we test statistical significance with respect to its null
hypothesis via the independent t-test. We adopt Glass’ ∆ to measure the effect size since the
standard deviations are different between societies (Glass 1976; Grissom and Kim 2012). We
consider Cohen’s (1988) descriptors to interpret the effect size. Specifically, an effect size less than
0.2 indicates that the difference is negligible; [0.2–0.5) indicates small; [0.5–0.8) indicates medium;
and, 0.8 or above indicates a large effect.
HDisease control. Societies considering hints have better control over disease spread than the societies
that do not consider hints. We compare societies with respect to MHealthy, MInfected, MDeceased,
MInfections, and MVaccination.
HIsolation. Societies considering hints yield improved isolation than other societies. We compare
societies with respect to MHome, MQuarantine, and MInfected.
HGoal. Agents in Ness have higher goal satisfaction than other societies. We compare societies with
respect to MGoal.

3.3.8 Experimental Setup

Table 3.2 lists the elements of reward function for an agent, including extrinsic rewards from the
environment and intrinsic rewards from an agent’s internal state. For data efficiency, we apply policy
parameter sharing (Gupta et al. 2017) based on the assumption of the bystander. We consider 100
agents (30 are infected initially) with the simulated world lasting for 2,000 steps. Each society
stabilizes within 1,500 steps. We train our agents for 100,000 steps, and report results averaged over
20 runs.

We consider normative information as shaping rewards that are part of intrinsic rewards. Specifi-
cally, we incorporate knowledge of being punished in the future from tell or hint into our simulation.
Table 3.2 lists elements based on Ness agents appraises their states.

Information Balance

As messages and hints provide additional normative information to learn, we keep the signal
distribution at the same level to balance the amount of information agents receive from a combination
of signals.

Since enhancing the signals can improve learning, we adjust the signal distributions to balance
the information across the societies. Table 3.3 lists the probability distribution over the various types
of signal we apply for each society.

In Table 3.3, Sanction is the probability of an agent being compelled to quarantine. An agent
considers a sanction as a punishment. Tell is the probability that an agent receives messages from its
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Table 3.2: Reward function. Sanctioning means quarantine. An agent’s extrinsic rewards come
from the environment and intrinsic rewards come from its current internal state. Norm satisfaction
or violation is based on the action and the perceived health state of others instead of the actual
health state.

Component Type Reward

Deceased Extrinsic –2
Sanctioning Extrinsic –1
Goal satisfaction Intrinsic +1
Goal violation Intrinsic –1
Norm satisfaction (self) Intrinsic +0.5
Norm violation (self) Intrinsic –0.5
Norm satisfaction (other) Extrinsic +0.5
Norm violation (other) Extrinsic –0.5

neighbors. An agent consider tell as potential rewards or punishments with 50% probability. Emote
is the probability that an agent receives implicit signals such as expressed emotions conveying a
positive or a negative attitudes as subtle sanctions. Hint is the probability that an agent receives
positive or negative attitudes as implicit signals. The agent infers the signals as potential positive or
negative rewards to encourage or discourage specific behaviors with 30% probability.

Table 3.3: Signal distributions. In each society, agents send a combination of the three social signals.
To balance the amount of information, we adjust the distributions immediate (I) and potential (P)
rewards as here. Here, wi and wp describe the weights associated with the rewards. EMOTE expresses
other-directed attitudes towards others’ behaviors as sanctions and has a self-directed attitude toward
the self.

Signals wI wP

Sanction Tell Emote Hint None
Signal type I P I I+P

PRIMITIVE 0% 0% 0% 0% 100% 0 0
PENALTY 38% 0% 0% 0% 62% 1 0
TELL 20% 18% 0% 0% 62% 1 0.5
EMOTE * 20% 0% 18% 0% 62% 1+0.5 0
Ness: Hint 20% 0% 0% 18% 62% 1+0.5 0.3
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Reinforcement Learning Parameters for Social Signals

Ness and baseline agents employ Q-Learning (Watkins and Dayan 1992) to learn norms. Q-Learning
is a model-free reinforcement learning algorithm that learns from trial and error. The Q-Learning
algorithm computes the action-state value Q(s,a) (Q value), which indicates the expected and
cumulative rewards for each state and action. By approximating the value of an action for a given
state, the Q-Learning algorithm finds the optimal policy. The Q function computes Q values with
the weighted average of the old value and the new information, and is given by:

Q(s,a) = Q(s,a)+α× (rt + γ max
a′

Q(s′,a′)−Q(s,a)) (3.2)

where Q(s,a) is the expected value for performing action a in state s. Here, α is the learning rate
and γ is the reward discount rate. s′ refers to the next state, and a′ refers to possible actions in s′.

Messages give precise causality between claimed behaviors and possible sanctions. On the
contrary, hints provide subtle normative information for behaviors, which requires further inference.
While hints and messages provide different levels of certainty of possible sanctions, we model
normative information with approving and disapproving attitudes as shaping rewards. Specifically,
we associate approving and disapproving attitudes with norm satisfaction and violation. The potential
rewards are calculated from the signal based on the signal type. We set κ as 0.30 for hints and κ as
0.50 for messages, where κ is the certainty of possible sanctions from normative information. The
supplementary material provides simulation hyperparameters for reproducibility.

3.4 Experimental Results

We now discuss the results for our research question RQsignal. Table 3.4 summarizes the simulation
results and the corresponding statistical analysis for RQsignal. For each hypothesis, the metric
reported is upon convergence.

3.4.1 HDisease control

To evaluate HDisease control, we measure the proportion of healthy (MHealthy), infectious (MInfected),
and deceased (MDeceased) agents. We also track the average number of infections (MInfections)
and vaccination rate (MVaccinated). Infectious agents include those who are asymptomatic, mild
symptomatic, and critical. Figure 3.2 reports these metrics. These simulation start from a 30%
infection rate in each society. First, Ness has a lower fraction of infected agents (0.22) than
PRIMITIVE (13.29), PENALTY (2.65), EMOTE (3.78), and TELL (2.96). The effect is large for
PRIMITIVE and small for PENALTY and TELL but negligible for EMOTE.
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Table 3.4: Comparing Ness with baseline societies on various metrics and their statistical analysis
with Glass’ ∆. All p-values are <0.001. The metrics reported are calculated upon convergence. The
performance in disease control is based on attitudes expressed and information shared as in the
order of Ness , EMOTE, TELL, PENALTY, and PRIMITIVE. However, the results of vaccination are
in reverse order. Ness have higher isolation and quarantine rate than TELL, EMOTE, and PENALTY.
Goal satisfaction ranked in this order Ness , TELL, PENALTY, EMOTE, and PRIMITIVE.

PRIM. PEN. EMOTE TELL Ness
H

D
is

ea
se

co
nt

ro
l

MInfected 13.29 2.65 3.78 2.96 0.22
∆ 0.96 0.25 0.30 0.26 –

MHealthy 46.31 77.60 67.11 76.27 97.54
∆ 17.54 3.22 4.79 3.23 –

MDeceased 41.01 19.75 29.10 20.78 2.08
∆ 3.25 5.74 5.27 5.48 –

MInfections 48.31 13.83 19.09 15.16 2.07
∆ 2.59 6.21 5.56 6.00 –

MVaccinated 82.41 36.72 32.69 35.33 93.57
∆ 1.03 16.21 15.86 14.78 –

H
Is

ol
at

io
n MHome 0.61 0.96 0.95 0.95 0.99

∆ 1.76 0.29 0.38 0.35 –

MQuarantine – 0.03 0.02 0.02 0.00
∆ – 0.26 0.28 0.26 –

H
G

oa
l MGoal 0.19 0.26 0.23 0.26 0.31

∆ 3.04 3.01 3.67 3.04 –

Second, Ness has the more healthy agents (97.54) than PRIMITIVE (46.31), PENALTY (77.60),
EMOTE (67.11), and TELL (76.27). The effect is large.

Third, Ness has a lower fraction of deceased agents (2.08) than PRIMITIVE (41.01), PENALTY

(19.75), EMOTE (29.10), and TELL (20.78). Ness has a lower MInfections(2.07) than PRIMITIVE

(48.31), PENALTY (13.83), EMOTE (19.09), and TELL (15.16). The effect is large for each case.
With regard to MVaccinated, Ness has a higher vaccination rate (93.57) than PRIMITIVE (82.41),

PENALTY (36.72), EMOTE (32.69), and TELL (35.33). The effect is large.
With MVaccinated, we observe that a vaccination norm emerges with a majority above 90% in

Ness. Specifically, even without a top-down imposed shared expectation on vaccination, most
agents in Ness learn that vaccination maximizes their payoff. The emerged vaccination norm can be
articulated as below.

norm type = {Committment},
subject = {Infected_Agent},
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object = {Healthy_Agent},
antecedent = {obs_health =[MILD , CRITICAL]},
consequent = {loc=[HOME]}

In societies where vaccination rates are low, agents learn that practicing self-isolation is commend-
able and that making short-term concessions can help avoid major penalties.

3.4.2 HIsolation

To evaluate HIsolation, we measure the proportion of infected agents who stay at home (MHome), the
number of agents in quarantine (MQuarantine), and the percentage of infected agents (MInfected in
societies. Figure 3.3 exhibits plots comparing MHome and MQuarantine.

We observe that Ness yields a higher tendency to stay isolated (0.99) when infected than
the PRIMITIVE (0.61), PENALTY (0.96), EMOTE (0.95), and TELL (0.95). The effect is large for
PRIMITIVE and small for the others.

Ness has a lower MQuarantine (0.00) than PENALTY (0.03), EMOTE (0.02), and TELL (0.02). The
effect is small.

From MHome and MQuarantine and MInfected, we observe that a norm emerges with a majority
above 90% in all societies other than PRIMITIVE. Specifically, agents in societies with the mask-
wearing norm learn to comply with the norm and stay self-isolated when infected. Furthermore, we
see that this norm emerges fastest in Ness (0.99). With more subtle attitudes and information from
hints, agents in Ness learn faster than those in TELL.

3.4.3 HGoal

To evaluate HGoal, we measure the goal satisfaction (MGoal) in societies. Figure 3.4 plots MGoal

in societies. We observe that agents in Ness have the highest goal satisfaction (0.31) than the
PRIMITIVE (0.19), PENALTY (0.26), EMOTE (0.23), and TELL (0.26). The effect is small for
EMOTE and large for the other societies.

3.5 Related Work

Research on norms and norm emergence closely relates to our contributions. Andrighetto et al.
(2013) show that a combination of verbal normative information, specifically positive normative
content, and negative sanction leads to higher and more stable cooperation with human subjects and
agent-based simulation. These models include normative reasoning but leave out soft signals such
as hints. Kalia et al. (2019) demonstrate how signals such as emotions influence norm satisfaction.
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Figure 3.2: Ness has the least infected and deceased agents with the highest vaccination rate
among all societies. However, despite a lower fraction of vaccinated agents, EMOTE has fewer
infected and deceased agents, and more healthy agents than other baselines. The effect is large for
the comparisons of MDeceased and MInfections. For MInfected, the effect is negligible for EMOTE and
small for PENALTY and TELL and large for PRIMITIVE. Appendix includes plots for the first 500
steps where the differences are noticeable.

Hints in Ness could be understood as emotions but hints serve both as an sanctioning approach and
providing information about norms.
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Figure 3.3: Isolation s higher in EMOTE and Ness i(effect is small) than in societies that lack hints.
Ness puts fewer agents in quarantine to achieve stable cooperation than PENALTY and TELL. The
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Figure 3.4: Ness yields more goal satisfaction than PRIMITIVE, PENALTY, EMOTE, and TELL.
The effect is small for EMOTE and large for the other societies.

Bourgais et al. (2019) present an agent architecture that integrates cognition, contagion, person-
ality, norms, and social relations to simulate humans and ensure explainable behaviors. Argente
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et al. (2022) propose an abstract normative emotional agent architecture, an extension of BDI
architecture that combines emotional, normative, and cognitive component. Tzeng et al. (2021)
combine normative model, a BDI model, and emotions for the decision-making process. Agents in
Ness learn from their interactions with the environment and further interpret norms from various
signals.

Mashayekhi et al. (2022) propose a norm emergence framework that operates on conflict
detection and inequity aversion. Their framework enables agents to pass experience with utilities,
associated states, and actions to agents of the same type. Ness agents maximize personal payoff
while the social signals propel the norm emergence.

Dignum et al. (2020) associate the interventions that governments can take and their economic
and social consequences with the SEIR model since effective and sustainable solutions cannot exist
without considering these factors. Ness further takes social signaling into consideration.

de Mooij et al. (2022) develop a large-scale data-driven agent-based simulation model where each
agent reasons about their internal attitudes and external factors to simulate behavioral interventions
in the real world. Ness enables norm emergence and accommodates imposed norms.

Dell’Anna et al. (2020) introduce a norm revision component that uses data collected from
interactions and an estimation of agents’ preferences to modify sanctions at runtime. de Lima et al.
(2019) enable agents to pick sanctions appropriate to the context. Realpe-Gómez et al. (2018) present
a model in which agents incorporate personal and normative considerations. Specifically, agents
make decisions that maximize their respective payoffs while appraising their group’s social norms.
Ness defines the utility function based on normative information learned from social signaling.

Airiau et al. (2014) model that supports the emergence of social norms by learning from
interactions with a group of agents. In Ness, we include cognition via social signals. Hao et al.
(2017) propose learning strategies based on local exploration and global exploration to support the
emergence of social norms. Whereas their model focus on maximizing the average payoffs among
agents, Ness focuses on investigating influence of various signals.

Morales et al. (2018) focus on the stability of synthesized norms that are verified by an evolu-
tionary process. Savarimuthu et al. (2010) propose an algorithm to identify obligation norms based
on association rule mining, a data mining technique. Pernpeintner (2021) proposes a governance
approach that restrict action spaces based on publicly observable behaviors and transitions.

Levy and Griffiths (2021) propose a framework that introduces congested actions where an
agent’s reward is not from pairwise interaction but is a function of others’ actions and the environ-
ment. Ness enables social learning from personal observation or by normative information sharing
from explicit messages or soft signals including hints.
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3.6 Discussion

During and after Covid-19, abundant research has investigated the effects of interventions against
the spread of the virus. However, little research considers policy violations, which are the essential
drivers of a pandemic. Modeling social signals with a framework enables a more realistic simulation
of individuals’ decisions, e.g., obedience or noncompliance to interventions against the spread of
the pandemic.

We present an approach that combines models of social signaling to address the emergence of
norms. The novelty of our approach arises from its comprehensive treatment of the three main kinds
of signals that drive norm emergence: sanctions, tell, and hint. Including normative information
from tell or hint enables indirect social learning, which resembles human behaviors in the real
world.

3.6.1 Summary of Findings

Our main findings are that agents who signal hints and respond to normative information converge
to norms faster than those who respond only to hard sanctions or explicit communication of approval
or disapproval. Societies that consider hints are also robust in complying to the converged norms
compared to those who do not consider hints. Specifically, in our experiments, Ness and EMOTE

exceed the 90% of norm emergence threshold faster than other societies and their compliance to the
converged norm is higher than PRIMITIVE, PENALTY, and TELL.

Our pandemic environment simulation results show that (1) Ness enables better control on the
spread of disease than other societies, (2) agents in Ness and EMOTE learn the self-isolation norm
faster and are more willing to isolate themselves when infected, (3) agents in Ness have higher goal
satisfaction than the other societies. In summary, Ness agents effectively avoid infection risk and
yield higher satisfaction than baseline agents.

3.6.2 Limitations and Threats to Validity

We made simplifying assumptions that agents can infer each other’s signals and that all signals are
genuine and honest. These assumptions may not apply in all cases but are essential when interacting
with other AI systems or needing special care. We would assume and expect AI systems, to be
honest in human-robot interaction. In addition, the signals of people who need special care reflect
their needs.
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3.6.3 Future Directions

As AI has become an essential part of our daily lives nowadays, incorporating human ethics into AI
is crucial (Ajmeri et al. 2020; Lopez-Sanchez et al. 2017; Murukannaiah et al. 2020). Since human
behavior is driven by the pursuit of values, studying human values helps us understand human
decisions and create agents that reason over human values (Liscio et al. 2021). Social signals could
also convey values. Whereas Montes and Sierra (2021) automate norm synthesis based on value
promotion, an interesting direction is to embed values into autonomous agents. That is, how can we
develop agents that are capable of making value-aligned decisions? A line of future research is to
investigate dimensions of emotions, physical arousal, that describes the strength of the emotional
state. Another future direction includes considering a mix of personality types in Ness. We can
investigate how different values influence human interactions in future research to support high
heterogeneity.
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CHAPTER

4

SOCIAL VALUES ORIENTATION

4.1 Introduction

What makes people make different decisions? Schwartz (2012) defined ten fundamental human
values, and each of them reflects specific motivations. Besides values, preferences define an indi-
vidual’s tendency to make a subjective selection among alternatives. Whereas values are relatively
stable, preferences are sensitive to context and constructed when triggered (Slovic 1995).

In the real world, humans with varied weights of values evaluate the outcomes of their actions
subjectively and act to maximize their utility (Schwartz 2012). In addition to values, an individual’s
social value orientation (SVO) influences the individual’s behaviors (Van Lange 1999). Whereas
values define the motivational bases of behaviors and attitudes of an individual (Schwartz 2012),
social value orientation indicates an individual’s preference for resource allocation between self and
others (Griesinger and Livingston Jr. 1973). Specifically, social value orientation provides stable
subjective weights for making decisions (Murphy and Ackermann 2014). When interacting with
others is inevitable, one individual’s behavior may affect another. SVO revises an individual’s utility
function by assigning different weights to itself and others. Here is an example of a real-world case
of SVO.

Example 4 SVO. During a pandemic, the authorities announce a mask-wearing regulation and
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claim that regulation would help avoid infecting others or being infected. Although Felix tests

positive on the pandemic and prefers not to wear a mask, he also cares about others’ health. If he

stays in a room with another healthy person, Elliot, Felix will put the mask on.

An agent is an autonomous, adaptive, and goal-driven entity (Russell and Norvig 2010). Whereas
many works assume agents consider the payoff of themselves, humans may further consider social
preferences in the real world. e.g., payoffs of others or social welfare (Charness and Rabin 2002).
When humans are in the loop along with software, there are emerging need to consider human
factors when building modern software and systems. These systems should consider human values
and be capable of reasoning over humans’ behaviors to be realistic and trustworthy.

In a multiagent system, social norms or social expectations (Rummel 1975; Ajmeri et al. 2017)
are societal principles that regulate our behavior towards one another by measuring our perceived
psychological distance. Humans evaluate social norms based on human values. Most previous works
related to norms do not consider human values and assume regimented environments. However,
humans are capable of deliberately adhering to or violating norms. Previous works on normative
agents consider human values and theories on sociality (Ajmeri et al. 2020; Verhagen 2000) in
decision-making process. SVO as an agent’s preference in a social context has not been fully
explored.

Contributions

We investigate the following research question.
RQSVO. How do the preferences for others’ rewards influence norm compliance?
To address RQSVO, we develop Fleur, an agent framework that considers values, personal

preferences, and social norms when making decisions. Our proposed framework Fleur combines
world model, cognitive model, emotion model, and social model. Since values are abstract and
need further definition, we start with social value orientations, the stable preferences for resource
allocation, in this work. Specifically, Fleur agents take into account social value orientation in utility
calculation.

Findings

We evaluate Fleur via an agent simulation of a pandemic scenario designed as an iterated single-
shot and intertemporal social dilemma game. We measure compliance, social experiences, and
invalidation during the simulation. We find that the understanding of SVO helps agents to make
more ethical decisions.
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Organization

Section 4.2 presents the related works. Section 4.3 describes the schematics of Fleur . Section 4.4
details the simulation experiments we conduct and the results. Section 4.5 presents our conclusion
and directions for future extensions.

4.2 Related Works

Griesinger and Livingston Jr. (1973) present a geometric model of SVO, the social value orientation
ring as Figure 4.2. Van Lange (1999) proposes a model and interprets prosocial orientation as
enhancing both joint outcomes and equality in the outcomes. Declerck and Bogaert (2008) describe
social value orientation as a personality trait. Their work indicates that prosocial orientation posi-
tively correlates with adopting others’ viewpoints and the ability to infer others’ mental states. On
the contrary, an individualistic orientation shows a negative correlation with these social skills. Fleur
follows the concepts of social preferences from Griesinger and Livingston Jr. (1973).

Szekely et al. (2021) show that high risk promotes robust norms, which have high resistance
to risk change. de Mooij et al. (2022) build a large-scale data-driven agent-based simulation
model to simulate behavioral interventions among humans. Each agent reasons over their internal
attitudes and external factors in this work. Ajmeri et al. (2018) show that robust norms emerge
among interactions where deviating agents reveal their contexts. This work enables agents to
empathize with other agents’ dilemmas by revealing contexts. Instead of sharing contexts, values,
or preferences, Fleur approximates others’ payoff with observation. Serramia et al. (2018) consider
shared values in a society with norms and focus on making ethical decisions that promote the
values. Ajmeri et al. (2020) propose an agent framework that enables agents to aggregate the value
preferences of stakeholders and make ethical decisions accordingly. This work takes other agents’
values into account when making decisions. Mosca and Such (2021) describe an agent framework
that aggregates the shared preferences and moral values of multiple users and makes the optimal
decisions for all users. Kalia et al. (2019) investigate the relationship between norm outcomes
and trust and emotions. Tzeng et al. (2021) consider emotions as sanctions. Specifically, norm
satisfaction or norm violation may trigger self-directed and other-directed emotions, which further
enforce social norms. Dell’Anna et al. (2020) propose a mechanism to regulate a multiagent system
by revising the sanctions at runtime to achieve runtime norm enforcement.

Agrawal et al. (2022) provide and evaluate explicit norms and explanations. Winikoff et al.
(2021) construct comprehensible explanations with beliefs, desires, and values. Kurtan and Yolum
(2021) estimate privacy values with existing shared images in a user’s social network. Tielman
et al. (2019) derive norms based on values and contexts. However, these works do not consider the
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differences between agents and the influences of an individual’s behavior on others. Mashayekhi et al.
(2022) model guilt based on inequity aversion theory for an individual perspective on prosociality.
In addition, they consider justice from a societal perspective on prosociality. Whereas Mashayekhi
et al. (2022) assume agents may be self-interested and their decisions may be affected by others’
performance, Fleur investigates the influence of social value orientations.

Table 4.1 summarizes related works on ethical agents. Adaptivity describes the capability
of responding to different contexts. Empathy defines the ability to consider others’ gain. The
information share indicates information sharing among agents. The information model describes
the applied models to process information and states. Among varied information models, contexts
describe the situation in which an agent stands. Emotions are the responses to internal or external
events or objects. Guilt is an aversive self-directed emotion. Explicit norms state causal normative
information, including antecedents and consequences. Values and preferences both define desirable
or undesirable states.

Table 4.1: Comparisons of works on ethical agents with norms and values.

Research Adaptivity Empathy Information Share Information Model

Fleur ✓ ✓ ✗ Preferences & Emo-
tions & Contexts

Agrawal et al. (2022) ✓ ✗ ✓ Explicit norms
Ajmeri et al. (2018) ✓ ✓ ✓ Contexts
Ajmeri et al. (2020) ✓ ✓ ✓ Values & Value pref-

erence & Contexts
Kalia et al. (2019) ✓ ✗ ✗ Trust & Emotions
Kurtan and Yolum
(2021)

✓ ✗ ✗ Values

Mashayekhi et al.
(2022)

✓ ✓ ✓ Guilt

Mosca and Such (2021) ✓ ✓ ✓ Preferences & Val-
ues

Serramia et al. (2018) ✓ ✗ ✗ Values
Tielman et al. (2019) ✓ ✗ ✓ Values & Contexts
Tzeng et al. (2021) ✗ ✗ ✗ Emotions
Winikoff et al. (2021) ✓ ✗ ✗ Values & Beliefs &

Goals
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4.3 Fleur

We now discuss the schematics of Fleur agents.
Figure 4.1 shows the architecture of Fleur. Fleur agents consists of five main components:

cognitive model, emotion model, world model, social model, and a decision module.

Cognitive 
Architecture

Belief
Desire

Intention

Decision Module

Social Model

Normative
Reasoning

Norm
Fullfilment

World Model

Context

Social 
Values

Individual
Values

Knowledge

Emotion Model

Appraisal

Emotion

Figure 4.1: Fleur architecture.

4.3.1 Cognitive Model

Cognition relates to conscious intellectual activities, such as thinking, reasoning, or remembering,
among which human values and preferences are essential. Specifically, values and preferences
may change how an individual evaluates an agent, an event, or an object. In Fleur, we start with
the preferences of individuals in the allocation of resources. Preferences are the attitudes toward
a set of objects in psychology (Slovic 1995). For instance, SVO provides agents with different
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preferences over resource allocations between themselves and others. Figure 4.2 demonstrates the
reward distribution of different SVO types. The horizontal axis measures the resources allocated
to oneself, and the vertical axis measures the resources allocated to others. Let

−→
R = (r1,r2, . . . ,rn)

represent the reward vector for a group of agents with size n. The reward for agent i considering
social aspect is:

rewardi = ri · cosθ + r−i · sinθ (4.1)

where ri represents the reward for agent i and r−i is the mean reward of all other agents interacting
with agent i. Here we adopt the reward angle from McKee et al. (2020) and represent agents’ social
value orientation with θ . We define θ ∈ {90°,45°,0°,−45°} as SVO ∈ {altruistic, prosocial, indi-
vidualistic, competitive}, respectively. With the weights provided by SVO, the presented equation
enables the accommodation of social preferences.

In utility calculation, we consider two components: (1) extrinsic reward and (2) intrinsic reward.
Whereas extrinsic rewards come from the environment, intrinsic rewards stem from internal stats,
e.g., human values and preferences.

We extend the Belief-Desire-Intention (BDI) architecture (Rao and Georgeff 1991). An agent
forms beliefs based on the information from the environment. The desire of an agent represents
having dispositions to act. An agent’s intention is a plan or action to achieve a selected desire.

Take Example 4 for instance. Since Felix has an intention to maximize the joint gain with Elliot,
he may choose a strategy to not increase his payoff at the cost of others’ sacrifice.

4.3.2 Emotion Model

We adopt the OCC model of emotions (Ortony et al. 1988). Specifically, our emotion model
appraises an object, an action, or an event and then triggers emotions. We consider emotional
valence and assume norm satisfaction or norm violation yields positive or negative emotions if self
behaviors align with the norms.

4.3.3 World Model

The world model describes the contexts in which Fleur agents stand and represents the general
knowledge Fleur agents possess. A context is a scenario that an agent faces. Knowledge in this
model are facts of the world. In Example 4, the context is that an infected individual, Felix, seeks
to maximize the collective gain of himself and a healthy individual, Elliot. In the meantime, Felix
acknowledges that a pandemic is ongoing.
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Figure 4.2: Representation of Social Value Orientation (Griesinger and Livingston Jr. 1973; McKee
et al. 2020). ri denotes outcome for oneself and r−i denotes outcomes for others.

4.3.4 Social Model

The social model of an agent includes social values, normative reasoning, and norm fulfillment.
Social values refer to the values of a society, while individual values delineate the values that
characterize an individual. Agents use the normative-reasoning component to reason over states,
norms, and possible outcomes of satisfying or violating norms. Norm fulfillment checks if a norm
has been fulfilled or violated with the selected action. Sanctions may come after norm fulfillments
or violations.

4.3.5 Decision Module

The decision module selects actions based on agents’ payoffs and individual values. We apply
Q-Learning (Watkins and Dayan 1992), a model-free reinforcement learning algorithm that learns
from trial and error, to our agents. Q-Learning approximates the action-state value Q(s,a) (Q value),
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with each state and action:

Q′(s,a) = Q(s,a)+α× (rt + γ max
a′

Q(s′,a′)−Q(s,a)) (4.2)

where Q′(s,a) represents the updated Q-value after performing action a at state s. s′ represents
the next state and a′ refers to possible actions in s′. α denotes the learning rate in the Q-value
update function, and rt represents the rewards received at state s after acting a. γ defines the reward
discount rate, which characterizes the importance of future rewards. Agents observe the environment,
form their beliefs about the world, and update their state-value with rewards via interactions. By
approximating the action-state value, the Q-Learning algorithm finds the optimal policy via the
expected and cumulative rewards.

Algorithm 3 describes the agent interaction in our simulation.

Algorithm 3: Decision loop of a Fleur agent
1 Initialize one agent with its desires D and preference P and SVO angle θ ;
2 Initialize action-value function Q with random weights w;
3 for t=1,T do
4 Pair up with another agent pn to interact with;
5 Observe the environment (including the partner and its θ ) and form beliefs bt ;
6 With a probability ε select a random action at

Otherwise select at = argmaxaQ(bt ,a;w)
7 Execute action at and observe reward rt ;
8 Observe the environment (including the partner) and form beliefs bt+1;
9 Activate norms N with beliefs bt , bt+1, and action at ;

10 if N ! =∅ then
11 Sanction the partner based on at and its behavior;
12 end
13 end

4.4 Experiments

We now describe our experiments and discuss the results.
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4.4.1 Experimental Scenario: Pandemic Mask Regulation

We build a pandemic scenario as an iterated single-shot and intertemporal social dilemma. We
assume that the authorities have announced a masking regulation. In each game, each agent selects
from the following two actions: (1) wear a mask, and (2) not wear a mask. Each agent has its
inherent preferences and social value orientation. An agent forms a belief about its partner’s health
based on its observation. During the interaction, the decision an agent makes affects itself and
others. The collective behaviors among agents determine the the dynamics in a society. Each agent
receives the final points from its own action and effects from others: Rsum = Pi_sel f +Pi_other +S j.
Pi_sel f denotes the payoff from the action that agent i selects considering the reward distribution
in Figure 4.2 and self-directed emotions. Pi_other is the payoff from the action that the other agent
performs. S j denotes the other-directed emotions from others towards agent i.

Table 4.2: Payoff for an actor and its partner based on how the actor acts and how its action
influence others. Column Actors show the points from the actions of the actor. Column Partners
display the points from the actions to the partner.

Health Actions

Actor Partner
Mask No mask

Actor Partner Actor Partner

healthy healthy 0.00 0.00 0.00 0.00
healthy infected 1.00 0.00 −1.00 0.00
infected healthy 0.00 1.00 0.00 −1.00
infected infected 0.50 0.50 −0.50 −0.50

Table 4.3: Payoff for decisions on preferences.

Type
Decisions

Satisfy Dissatisfy

Preference 0.50 0.00
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Table 4.4: Payoff for decisions on norms.

Actor
Partner

Wear Not-Wear

Wear 0.10 −0.10
Not-Wear 0.00 0.10

4.4.2 Experimental Setup

We develop a simulation using Mesa (Masad and Kazil 2015), an agent-based modeling framework
in Python for creating, visualizing, and analyzing agent-based models. We ran the simulations on a
device with 32 GB RAM and GPU NVIDIA GTX 1070 Ti.

We evaluated Fleur via a simulated pandemic scenario where agents’ behaviors influence the
collective outcome of the social game. A game-theoretical setting may be ideal for validating the
social dilemma with SVO and norms. However, real-world cases are usually non-zero-sum games
where one’s gain does not always lead to others’ loss. In our scenario, depending on the context, the
same action may lead to different consequences for the agent itself and its partner. For instance,
when an agent is healthy and its partner is infected, wearing a mask gives the agent a positive payoff
from the protection of the mask but no payoff for its partner. Conversely, not wearing a mask leads
to a negative payoff for the agent and no payoff for its partner. The payoff given to the agent and
its partner corresponds to the X and Y axis in Figure 4.2. When formalizing social interactions
with SVO in game-theoretical settings, the payoffs of actions for an agent and others are required
information.

We incorporated beliefs and desires, and intentions into our agents. An agent observes its
environment and processes its perception, and forms its beliefs about the world. In each episode,
agents pair up to interact with one another and sanction based on their and partners’ decisions
(Table 4.4).

Context. A context is composed of attributes from an agent and others and the environment as
shown in Table 4.2. We frame the simulation as a non-zero-sum game where one’s gain does not
necessarily lead to the other parties’ loss.

Preference. In psychology, preferences refer to an agent’s attitudes towards a set of objects. In
our simulation, we set 40% of agents to prefer to wear and prefer not to masks individually. The
rest of the agents have a neutral attitude on masks. The payoffs for following the preferences are
listed in Table 4.3.

Social Value Orientation. Social value orientation defines an agent’s preference for allocating
resources between itself and others. We consider altruistic, prosocial, individualistic, and competitive
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orientations selected from Figure 4.2.

4.4.3 Hypotheses and Metrics

We compute the following measures to address our research question RQSVO.

Compliance The percentage of agents who satisfy norms

Social Experience The total payoff of the agents in a society

Invalidation The percentage of agents who do not meet their preferences in a society

To answer our research question RQSVO, we evaluate three hypotheses that correspond to the
specific metric, respectively.

HCompliance: Preferences for others’ rewards positively affect norm compliance with prosocial
norms

HSocial Experience: The distribution of preferences for others’ rewards positively affect social experi-
ences in a society

HInvalidation: Preferences for others’ rewards negatively affect the tendency to meet personal prefer-
ences

4.4.4 Experiments

We ran a population of N = 40 agents in which we equally distributed our targeted SVO types: al-
truistic, prosocial, individualistic, and competitive. Since each game is a single-shot social dilemma,
we consider each game as an episode. The training last for 500,000 steps. In evaluation, we run 100
episodes and compute the mean values to minimize deviation from coincidence. We define our five
societies as below.

Mixed society A society of agents with mixed social value orientation distribution

Altruistic society A society of agents who make decisions based on altruistic concerns

Prosocial society A society of agents who make decisions based on prosocial concerns

Selfish society A society of agents who make decisions based on selfish concerns

Competitive society A society of agents who make decisions based on competitive concerns
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Table 4.5: Comparing agent societies with different social value orientation distribution on various
metrics and their statistical analysis with Glass’ ∆ and p-value. Each metric row shows the numeric
value of the metric after simulation convergence.

Compliance Social Experience Invalidation

Smixed
X̄ 63.40% 0.45 29.60%
p-value – – –
∆ – – –

Saltruistic
X̄ 69.70% 0.55 33.40%
p-value < 0.001 < 0.001 < 0.001
∆ 0.66 0.61 0.46

Sprosocial
X̄ 70.25% 0.57 32.28%
p-value < 0.001 < 0.001 < 0.05
∆ 0.72 0.68 0.33

Ssel f ish
X̄ 65.10% 0.47 26.90%
p-value 0.22 0.42 < 0.05
∆ 0.18 0.12 0.33

Scompetitive
X̄ 54.08% 0.22 28.88%
p-value < 0.001 < 0.001 0.54
∆ 0.98 1.31 0.09
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Figure 4.3: Compliance in training phase: The percentage of norm satisfaction in a society.
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We assume all agents are aware of a mask-wearing norm. Agents who satisfy the norm receive
positive emotions from themselves and others, as in Table 4.4. Conversely, norm violators receive
negative emotions. Table 4.5 summarizes results of our simulation.

Figure 4.3 displays the compliance, the percentage of agents who satisfy norms, in the mixed
and baseline-agent societies. We find that the compliance in the altruistic and prosocial-agent society,
averaging at 69.70% and 70.25%, is higher than in the mixed (63.40%) and agent societies have no
positive weights on others’ payoff (65.10% and 54.08% for selfish and competitive-agent societies,
respectively). The differences in the results of altruistic and prosocial-agent societies are statistically
significant with medium effect (p < 0.001; Glass’ ∆ > 0.5). Conversely, the competitive-agent
society has the least compliance, averaging at 54.08%, with p < 0.001 and Glass’ ∆ > 0.8. The
results of the selfish-agent society (65.10%) shows no significant difference with p > 0.05 and
Glass’ ∆≈ 0.2.

There are 25% of agents in the mixed-agent society are competitive agents. Specifically, they
prefer to minimize others’ payoff. A competitive infected agent may choose not to wear a mask
when interacting with other healthy agents in this scenario. In the meantime, the selfish agents
would maximize their self utility without considering others. Therefore, the behaviors of selfish and
competitive agents may decrease compliance in the mixed-agent society.
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Figure 4.4: Social Experience in training phase: The total payoff of the agents in a society.
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Figure 4.4 compares the average payoff in the mixed and baseline-agent societies. The social
experience in the altruistic and prosocial-agent society, averaging at 0.55 and 0.57, is higher than
in the mixed (0.45) and agent societies have no positive weights on others’ payoff (0.47 and 0.22
for selfish and competitive-agent societies, respectively). The differences in the results of altruistic
and prosocial-agent societies are statistically significant with medium effect (p < 0.001; Glass’
∆ > 0.5). On the contrary, the competitive-agent society has the least social experience, averaging
at 0.22, with p < 0.001 and Glass’ ∆ > 0.8. The results of the selfish-agent society (0.47) shows no
significant difference with p > 0.05 and Glass’ ∆ < 0.2.

The mixed-agent society shows similar results as the selfish-agent society. Although 50% of
the mixed-agent society agents are altruistic and prosocial, the competitive agents would choose to
minimize others’ payoff without hurting their self-interests.

Since the selfish agents do not care about others, they would act for the sake of their benefit.
The selfish and competitive behaviors diminish the social experiences in society.
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Figure 4.5: Invalidation in training phase: The percentage of agents who do not meet their prefer-
ences in a society.

Figure 4.5 compares invalidation, the percentage of agents who do not meet their preferences in
the mixed and baseline-agent societies.

The invalidation in the altruistic and prosocial-agent society, averaging at 33.40% and 32.28%,
is higher than in the mixed (29.60%) and agent societies have no positive weights on others’ payoff
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(26.90% and 28.88% for selfish and competitive-agent societies, respectively). The differences
in the results of altruistic and prosocial-agent societies are statistically significant with small or
medium effect (p < 0.001; Glass’ ∆ > 0.2). On the contrary, the selfish-agent society has the least
invalidation, average at 26.90%, with p < 0.05 and Glass’ ∆ > 0.2. The results of the competitive-
agent society (28.88%) shows no significant difference with p > 0.05 and Glass’ ∆ < 0.2.

While agents who consider others’ rewards positively achieve better compliance and social
experiences, these achievements are based on their sacrifice of preferences. The altruistic and
prosocial agent societies have the most percentage of agents who do not meet their preferences.

4.4.5 Threats to Validity

First, our simulation has a limited action space. Moreover, different actions may have the same
payoff in some contexts. Other behaviors may better describe different types of SVO, yet our focus
is on showing how SVO influences normative decisions.

Second, we represent actual societies as simulations. While differences in preference and SVO
among people are inevitable, we focus on validating the influence of SVO.

Third, to simplify the simulation, we assume fixed interaction, whereas real-world interactions
tend to be random. An agent may interact with one another in the same place many times or have
no interaction. We randomly pair up all agents to mitigate this threat and average out the results.

4.5 Conclusions and Directions

We present an agent architecture that integrates cognitive architecture, world model, and social
model to investigate how social value orientation influences compliance with norms. We simulate a
pandemic scenario in which agents make decisions based on their individual and social preferences.
The simulations show that altruistic and prosocial-agent societies comply better with the mask
norm and bring out higher social experiences. However, altruistic and prosocial agents trade their
personal preferences for compliance and social experiences. The results between the mixed and
selfish-agent societies show no considerable difference. On the one hand, while half of the agents in
the mixed-agent society exhibit altruistic and prosocial tendencies, the competitive agents prioritize
minimizing others’ gains without compromising their self-interests. On the other hand, the selfish
agents act solely in pursuit of their personal gain, disregarding the welfare of others. These selfish
and competitive behaviors contribute to a decline in overall social experience within the society.
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Future Directions

Our possible extensions include investigating an unequal distribution of SVO in Fleur and applying
real-world data in the simulation. Other future directions are incorporating values into agents, and
revealing adequate information to explain and convince others of inevitable normative deviations
(Agrawal et al. 2022; Murukannaiah et al. 2020; Woodgate and Ajmeri 2022).
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CHAPTER

5

DECISION AND RATIONALE WITH
VALUES

5.1 Introduction

Social norms define the shared standard of acceptable behaviors in a society (Von Wright 1963). An
agent forms legitimate expectations of the behavior of others based on norms. An agent may deviate
from a norm in exercising its autonomy (Singh and Singh 2023a). A deviation from a norm may
lead to a positive or a negative sanction. A deviation from a social norm may be excused with an
acceptable rationale. Further, to be trusted by humans, an agent should be able to provide rationales
for their decisions (Winikoff et al. 2021; Ayci et al. 2023).

Example 5 Sharing rationale. Alice comes to office with a mask where she notices Bella not

wearing a mask. Bella justifies her decision by stating that, first, there is no mask mandate in the

office as the surrounding environment is safe. Second, she hates wearing a mask because wearing

one causes her eczema. Alice agrees with Bella’s perspective.

Langley (2019) and Miller (2019) suggest that the goal of rationales is to provide necessary
information for a decision. In practice, rationale include additional information that others may be
unable to observe, e.g., beliefs and preferences. Crafting a rationale is challenging. Rationales may

58



be verbose, leading to information overload. They may include private information, which one may
not prefer sharing.

Example 6 Adapting rationale. Bella and Alice both value health. Although Bella prefers not to

wear a mask due to skin issues, sharing that may not be necessary. Bella justifies her behavior

of not wearing a mask by stating that the surrounding environment is safe and that a mask is not

needed. Alice finds Bella’s rationale convincing.

A good decision made by an agent should go beyond physical gain and be aligned with human
values (Woodgate and Ajmeri 2022; Yazdanpanah et al. 2023). Whereas values guide motivations
and drive decisions, rationales or information aligned with values best justify one’s behaviors (Liscio
et al. 2023; Winikoff et al. 2021).

We posit that a good rationale is the one which (1) considers the context in which the decision is
made by an agent and (2) considers the values, understood as motivational bases of one’s behaviour
(Schwartz 2012), of the decision-maker (the agent who produces a rationale) and the receiver of the
rationale. Instead of sharing all available information in a rationale, it is beneficial for an agent to
share only relevant pieces of information which align well with self and others’ values. Sharing
only relevant pieces preserves privacy of the provider of the rationale and ensures that the receiver
of a rationale is not overwhelmed by unnecessary information.

Values reflect various concerns in decision-making and conflict resolution. Whereas value-
aligned rationales enable agents to justify their behavior, deliberating over others’ values may
increase convincingness and acceptance. Based on the preceding intuition, we make the following
contribution.

Contribution We create Exanna, a framework that incorporates values in decision-making,
rationale generation, and reasoning over rationale. Whereas other works focus on making agent
decisions interpretable to humans, Exanna agents provide rationales to both agents and humans.

Findings We evaluate Exanna via a multiagent simulation study considering a pandemic scenario.
We consider agent societies with three characteristics for producing rationales: share all, share
decision rules, and share value-aligned rules. With Exanna , we find that agents who consider value
preferences when giving rationales achieve higher conflict resolution. Also, rationales aligned with
values but with less private information lead to better social experience.

Novelty This work presents essential perspectives on decisions and rationales with values. First,
an individual’s decision-making and evaluation involves values, but values with higher weights
dominate the decision. A compelling rationale often states causal relationships with the esteemed
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values of agents. An Exanna agent makes decisions based on its or its stakeholder’s values. Upon
generating rationales, the agent discloses the causal effects based on values, which are interpretable
to both agents and humans. Second, individuals evaluate actions or states based on their values.
Exanna incorporates values in state evaluation.

Organization Section 5.2 discusses relevant related works. Section 5.3 details the Exanna frame-
work. Section 5.4 describes a simulated pandemic scenario for evaluation and the results. Section 5.6
concludes with listing potential future directions.

5.2 Related Work

Research on agents with rationales and values is related.

5.2.1 Agents and Rationales

Hind et al. (2019) leverage existing supervised machine-learning techniques to generate rationales
together with decisions without values involved and without exposing the inner details of the model.
Whereas Hind et al. generate rationales based on the rationales in the training set, Exanna generates
rationales based on context and values.

Georgara et al. (2022) propose an algorithm that wraps up any team formation algorithm to build
justifications on why specific teams are formed. Specifically, Georgara et al. build justifications
based on contrastive explanations and by exploring what-if scenarios. A causal attribution explains
why a behavior occur. We provide causal attribution of the selected action, precisely the premise, as
rationales and wrap the rationales with values.

Wang et al. (2021) formulate rationales with the simplest subset of features with the proposed
search algorithm. This algorithm finds sufficient rationales by modifying the beam search algorithm
and leveraging the tractability of expected predictions. The found set of features is sufficient
as causal attribution for probabilistic solid guarantees on model behavior under observed data
distribution. Contreras et al. (2022) propose a mirror model and assume a high understandability
from performing similar to an observer’s mental simulation. They apply deep Q-network and
saliency maps in rationale generation, highlighting related input features as rationales. These works
reveal each feature related to the model behavior.

Ajmeri et al. (2018) propose Poros, a framework that considers no values and shares full context
as a rationale. Therefore, agents can make decisions from the perspective of others. In Exanna,
agents selectively share information based on its and others’ values.
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5.2.2 Agents and Values

Lera-Leri et al. (2022) propose a method that considers a range of ethical principles from maximum
utility to maximum fairness, for the aggregation of value systems instead of one single value. Ajmeri
et al. (2020) present a framework that aggregates the value preferences of users to make ethically
appropriate decisions. In addition to making decisions based on values, Exanna agents justify their
behaviors and evaluate rationales based on their values.

Mosca and Such (2021) propose an agent that supports values in multiuser settings via generating
optimal policy considering the preferences and values of users. They justify solutions through
contrastive explanations and positive answers. The causal attribution includes (1) a suggested action
and the inputs of all users and (2) possible consequences from the user’s preference. Liao et al. (2023)
propose an ethical recommendation component involving multiple stakeholders, which employs
methods from normative systems and formal argumentation to achieve agreements among agents.
Whereas these works generate explanations to present causal attribution with all the necessary
information, Exanna further wraps rationales with values.

Agrawal et al. (2022) propose an agent that shares norms as causal attributions, and considers
no values. Specifically, each agent evolves and learns rules of optimal behaviors with no values
involved. Exanna adaptively shares learned rules as rationales that align with individual’s values.

Montes and Sierra (2022) propose a methodology to synthesize parametric normative systems
based on value promotion. Whereas Montes and Sierra focus on the design of moral norms synthesis
and do not consider internal reasoning on norms, Exanna focuses on internal reasoning and justifying
behavior based on values. Ogunniye and Kökciyan (2023) propose an ontology to represent the
privacy domain that includes norms for social contexts, privacy preferences, and privacy policies.
Ogunniye and Kökciyan introduce an argumentation-based dialogue to provide justifications during
multi-party dialogues. In addition, the dialogue helps agents to reason about contextual norms and
resolve privacy conflicts among agents. Di Scala and Yolum (2023) propose a new privacy agent
for content concealment, equity of treatment, the collaboration of users, and the rationalization
of actions. Specifically, Scala and Yolum provide textual output by considering outcomes and
providing feedback to the user, such as a summary or detailed advice on possible actions to improve
performance. Whereas these works claim that argumentation-based dialogue facilitates the exchange
of rationales, Exanna provides a value-centered rationale for the made decision.

Table 5.1 summarizes the above comparisons emphasizing values and rationales.

5.3 Method

We now describe the schematics and decision making in Exanna along with its rationale components.
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Table 5.1: Summary of comparisons with related work with respect to the application of values in
decisions and rationales (generation and evaluation). The ✓ and ✗ notions signify that values are
applied and not applied, respectively.

Rationale Values applied in Rationale representation
Decision Rationale

Lera-Leri et al. (2022) ✗ ✓ ✗ No rationales provided
Ajmeri et al. (2020) ✗ ✓ ✗ No rationales provided

Agrawal et al. (2022) ✓ ✗ ✗ Norm as causal attribution but no
information hiding

Contreras et al. (2022) ✓ ✗ ✗ Highlighted input features in deep Q-
network but no information hiding

Wang et al. (2021) ✓ ✗ ✗ The prediction and a minimum sub-
set of inputs but no information hid-
ing

Hind et al. (2019) ✓ ✗ ✗ Texts predicted via supervised learn-
ing, along with the predicted action

Ajmeri et al. (2018) ✓ ✗ ✗ Full context

Di Scala and Yolum
(2023)

✓ ✓ ✓ Outcomes or advice based on com-
plete information but no information
hiding

Ogunniye and Kök-
ciyan (2023)

✓ ✓ ✓ A sequence of communications but
no information hiding

Mosca and Such
(2021)

✓ ✓ ✓ Suggested action based on the inputs
from all users, along with the possi-
ble outcome of the user’s preference
as causal attribution but no informa-
tion hiding

Exanna ✓ ✓ ✓ Behavior rules (with information
hiding) and alignment with values

5.3.1 Schematics of an Exanna Agent

Belief is an agent’s interpretation of the world, which is formed based on its observations. bt

indicates the belief from observation at time t. Exanna agents store beliefs as pairs of attributes
and their bindings.

Context is the information that characterizes the situation of an agent. Context is represented as a
set of attribute-binding pairs. An example of context is as below.

{Risk=None , Preference= ¬Wear , InteractWith=Colleague ,
OtherAgentType=Health , RiskFromAnother=High ,
OtherAgentPreference=Wear , Location=Office}
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A context comprises public (e.g., an agent’s location) and private (e.g., beliefs, preferences, and
values) attributes.

Goal defines the desired state that an agent wants to achieve. The outcome of a goal has a binary
value, indicating whether the goal is achieved or not after performing the selected action

Action is the methodology to change the state and, therefore, approach the goals. We represent an
action as a where a ∈ A and A is the set of available actions.

Preference refers to a subjective inclination for an option over other alternatives. We represent a
preference as p and p ∈ O where O is the option space.

Decision rule is the mapping between an observation and a reasonable action, represented as
if-then logic. A decision rule includes a premise and a consequent. The premise of a decision rule
is a set of attribute-binding pairs. The consequent of a decision rule is an action to be taken when
the premise holds. An example rule is

{Risk=None , InteractWith=Colleague} => ¬Wear

Norm is the expected behavior or the behavior of the majority in a group. When a majority applies
the same decision rule, the rule becomes a norm. In Exanna, a norm uses the same if-then
representation as a decision rule.

Sanction is the response to norm violation or satisfaction. A sanction can be a positive, negative,
or neutral reaction from one agent to another.

Payoff refers to the outcome or result an agent receives in a given state after taking an action.

Values refers to motivational goals of agents. A subset of values is applicable within a context
(Liscio et al. 2021) and agents have a preference order over those values.

Value preferences is a preference order over various values for one context. We store each value
preference Vcontext in a tuple where numbers add up to 1. vi denotes the weight of one value in
one value preference (vi ∈ Vcontext) where 0 ≤ vi ≤ 1 and ∑

n
i=1 vi = 1. We treat each ⟨Vcontext⟩

as an attribute and store the corresponding preferences as its binding. For instance, an agent
with value preferences V = {Vpandemic = {vhealth = 0.6, vprivacy = 0.4};Vnormal = {vhealth = 0.4,
vprivacy = 0.6}} indicates that the agent values health over privacy during a pandemic but the
opposite in a normal context.
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5.3.2 Interaction and Decision Making

Interactions in Exanna are between an actor, the rationale giver, and an observer agent, the rationale
receiver. An actor agent selects an action based on its goal. Based on the chosen action, the actor
agent provides a rationale to the observer who witnesses its behavior. Upon receiving a rationale
from the actor agent, the observer agent evaluates the rationale by making an analogous decision.
With a weighted sum of payoffs, we incorporate values in decision-making where a substantial
value casts a more significant effect on the final decision.

Algorithm 4 describes the pseudo-code of an agent’s decision-making loop. An agent forms
beliefs bt about the world based on its observations (Line 4). An agent’s payoff is a weighted sum of
payoffs corresponding to an agent’s values. The Q function in Line 6 and reward in Line 7 refers to
the payoff calculation in Appendix B.3. The Q function, in addition, includes feedback from others.
In Line 6, the agent selects the action that gives the best payoff for bt . If the agent interacts with
another agent, for its action the agent creates rationales based on bt and the selected action (Line 9
with Algorithm 5) and sends those rationales. Other agents who observe the action and receive the
rationales evaluate the rationales (Algorithm 6) with their context and give sanctions.

5.3.3 Rationale Generation

Rationale generation in Exanna follows a rule learning process—a process of evolving rules from
datasets or interactions. The basic form of a rule is an if-then expression, e.g., if premise then
consequent, where the consequent holds whenever the premise is true. We adapt XCS (Butz and
Wilson 2000), a rule-based learning algorithm that utilizes a genetic algorithm and reinforcement
learning, which evolves a set of rules or strategies based on payoffs or rewards produced by
the proposed actions. Unlike other machine learning techniques, XCS, in addition to generating
a decision, generates a set of rules describing its decision. XCS process enables flexibility for
implementation of norms and supports interpretability for humans with logical rules.

An example rule of Example 6 is

{Risk=None , InteractWith=Colleague} => ¬Wear

The premise of a learned rule is a conjunction of attribute-binding pairs, e.g., {Risk=None, Inter-
actWith=colleague}. The consequent of a learned rule is an action to be taken when the premise
holds—in the above example, ¬Wear. Each rule has associated (1) fitness indicating its suitability,
(2) numerosity indicating the number of instances of the rule in the rule set, (3) predicted reward
indicating the expected reward if the rule applies, and (4) prediction error.
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Algorithm 4: Decision-making for an Exanna agent
1 Initialize agent (including value preferences V and other mental states);
2 Initialize rule-value function Q;
3 for t=1,T do
4 Form beliefs bt based on perceived state;
5 Identify available actions A;
6 With a probability ε select a random action aactor ∈ A

Otherwise select aactor = argmaxaQ(bt ,a) ;
7 Execute action aactor and observe reward rt ;
8 if Any observer agent pa then

/* Generate rationales based on selected action and beliefs */
9 Rat = GenRationale(bt , aactor);

10 Send Rat to pa;
11 Observe agent pa’s action aactor;
12 if Receive rationales Ratactor from agent pa then
13 Update beliefs bt based on Ratactor;
14 end

/* Generate sanctions based on beliefs and given rationales */
15 sanctionactor = EvalRationale(Ratactor if any, aactor, bt);
16 end

/* Agents learn from reward and sanction */
17 learn(bt , aactor, rt + sanctionactor, bt+1);
18 end

XCS for Rationale Generation Briefly

The key features of XCS are Rule discovery, Rules subsumption, and Action selection. Rule
discovery through the crossover and mutation processes involves introducing randomness to the
antecedent by adding or removing factors, thereby generating rules that are either more general or
specific. If a more general rule exists that exhibits lower predictive error within the given context,
the algorithm will retain the more general rule and discard the more specific one. When selecting
an action, the algorithm selects the one with the best-aggregated fitness. Supplemental material
provides details of XCS.

An example of a rationale for not wearing a mask is {Risk=None, Preference=¬Wear, Inter-
actWith=colleague}. This can be interpreted as mask is not needed when there is a no infection risk
of and when agent prefers to not wear a mask while interacting with a colleague in the office. Each
agent keeps the rules it discovers and evolves those in a rule set for decision-making.
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Refining Rationale

Not all elements of a rule generated by XCS are appropriate to be a part of rationale. For instance,
in Example 6, sharing personal preference is unnecessary when both agents value health. After
generating the base rule, we refine the elements of rule considering the values of the actor and the
observer agents. Following the example above, the agent who prefers the value of health then adjusts
its rationale for the colleague who also cares about health to a health-related causal attribution, if it
exists. For instance, no mask is required because of no risk of infection when interacting with a
colleague in the office.

Algorithm 5 details the process of rationale generation. An agent first identifies rules associated
with beliefs bt (Line 2) and filters out rules not with the selected action (Line 3). The rationales
are the aggregated rules (Line 4). An agent only reveals private information associated with the
values of agents involved in the interaction (Line 5–7). For instance, if an agent who cares about
freedom interacts with one who cares about freedom, it will exclude the infection risk from the
environment in its rationales. For each rationale, an agent computes the privacy as the proportion of
private attributes forming part of the rationale (Line 8).

Algorithm 5: Rationale generation
Input: beliefs bt , Action a
Output: Rationale Rat

1 Function GenRationale:
/* Generate associated rules with beliefs bt */

2 Get match set ms with bt ;
3 Generate action set from ms with a;
4 Aggregate rules Rat associated with action set;
5 if values not involved then
6 remove factors in Rat not related to presented values in bt ;
7 end
8 Compute privacy;
9 return

5.3.4 Rationale Evaluation

On receiving a rationale from the actor agent, the receiver first updates its beliefs based on the
rationale. Specifically, the receiver updates the beliefs of unobservable information from actor’s
context. In the rationale generation mask example, the receiver updates its beliefs of the infection
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risk to “None”. When evaluating a rationale, the receiver makes an analogous decision based on
the updated beliefs. If the receiver’s computed action matches the actor’s observed action in that
context, the receiver accepts the actor’s rationale.

Algorithm 6 details the evaluation of given rationales. Upon receiving a rationale, an agent
reasons over the rationale. Specifically, the agent first updates its beliefs bt based on the rationale
in Line 3, precisely the private context or beliefs of others. With the provided rationale, an agent
checks if any applicable rules align with its rule sets in Line 4. The agent identifies associated rules
from bt and adds them to applicable rules in Line 5. In Line 8, the agent calculates the fitness for
each available action for each applicable rule and keeps the best action for each rule. The agent
accepts this rationale if any selected action matches the observed action.

Algorithm 6: Evaluating a rationale
Input: Rationales Rat, Observed action aactor, Beliefs bt
Output: Decision d

1 Function EvalRationale:
2 Initialize applicable rules ars;
3 update bt with private information in Rat;
4 Add triggered match set from Rat to applicable rules ars;
5 Add triggered match set from bt to applicable rules ars;
6 for rule in applicable rules ars do
7 for act in possible actions do
8 calculate fitness fact ;
9 end

10 Keep the act with best fitness;
11 end
12 if act contains aactor then
13 Decision d = accept;
14 else
15 Decision d = reject;
16 end
17 return

5.4 Simulation

We evaluate Exanna via a simulated pandemic scenario based on Examples 5 and 6 where agents
move to various places, interact with other agents, decide to wear or not wear a mask, and provide a
justification for their actions. We implemented our environment in MASON (Luke et al. 2005).
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5.4.1 Scenario

The environment represents a multiagent society with several places and social circles. Our environ-
ment involves a finite population of 200 agents with different social circles. The environment has
one park, one hospital, five homes, five offices, and five parties. Agents move around and interact in
five places (home, office, party park, and hospital). Each agent is native to one home, one office,
and one party. Agents in the same home, office, or party share the same family, colleague, or friend
social circle. Each social circle has 40 agents. Time is represented in steps. Each agent moves to
one place at each step and has a probability (50%) of interacting with one agent at the same place.
Agents are more likely (75%) to move to places they are associated with when they move to home,
office, and party, i.e., an agent is more likely to visit their own home than someone else’s home.

Each agent forms its goal based on its value preferences. Specifically, each value in one context
has a payoff matrix (Table 5.3 and 5.4); the weighted sum of the payoff determines the goal (desired
states). An agent selecting an action not aligning with its goal, is considered deviating from its goal.

In the simulated environment, when an agent encounters another agent at the same place, it
chooses an action based on its goal—whether to wear a mask. In addition, the agent justifies its
behavior based on its beliefs in that context. For instance, the agent gives a rationale—{Risk=None,
InteractWith=Colleague}—while not wearing a mask. The beliefs of an agent include public and
private attributes. Each agent receives a payoff according to the interaction place for action selection
as in Table 5.2(a). Wearing a mask at a hospital during a pandemic is desirable. Place and value
preferences determine the payoff an agent gives to itself. An agent also gives sanctions as feedback
to others based on their actions. The sanctions are based on the social circle. Table 5.2(b) lists the
sanctions associated with social circles.

We run each simulation 10 times, and each simulation lasts 30,000 steps. We consider value of
freedom and health. The value of freedom means agents would claim their free will and tend to
follow their preferences.

5.4.2 Contextual Properties

Whereas agents have limited observations on the environment, the context includes the place
(home, office, party, park, and hospital) where interactions occur, the relationship (family, friend,
colleague, and stranger) with the observer, the subjective belief of infection risk of the environment,
the personal preference on mask-wearing, and the types of observer agents. Due to the partial
observation, agents act based on their beliefs. Rationales enable belief updates.
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Table 5.2: Payoff and feedback based on place and circle.

Table 5.2(a) Actor’s payoff based on the place. Num-
bers reflect general expectations of places.

Places Wear ¬Wear

Home −0,25 0,25
Office 0,25 −0,25
Party −0,25 0,25
Park −0,5 0,5
Hospital 0,5 −0,5

Table 5.2(b) Feedback from an observer based on
social circle.

Social
Circle

Observer’s re-
sponse

Reject Accept

Family −1,00 1,00
Friend −0,75 0,75
Coworker−0,50 0,50
Stranger −0,25 0,25

Table 5.3: Payoffs for the value of freedom depend on an agents’ preferences.

Table 5.3(a) Payoffs corresponding to a preference
for wearing a mask.

Agent 2

Wear ¬Wear

Wear 1,0 1,0

A
ge

nt
1

¬Wear −1,0 −1,0

Table 5.3(b) Payoffs corresponding to a preference
for not wearing a mask.

Agent 2

Wear ¬Wear

Wear −1,0 −1,0
A

ge
nt

1

¬Wear 1,0 1,0

Table 5.4: Payoffs for the value of health. The numbers reflect how safe an agent feels.

Infection risk

No risk High risk

Wear 0,0 1,0

A
ct

io
n

¬Wear 0,0 −1,0

5.4.3 Types of Societies

We define types of societies based on the rationale types. All societies include 50% of agents value
health and 50% of agents value freedom. The value preferences of agents are as Table 5.5. All
agents optimize their behavior based on the weighted sum of payoffs from themselves and others.

Baseline 1: Share All Society Agents share all information as rationales. Agents can make deci-
sion from the perspective of others.

Baseline 2: Share Decision Rules Society Agents share their decision rules as rationales.

Exanna: Share Value-Aligned Rules Society Agents share their decision rules along with selec-
tive information that aligns with values as rationales.
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Table 5.5: Value preferences of agents.

Agents: Values Freedom Health

Freedom-loving 1.0 0.0
Health-freak 0.0 1.0

5.4.4 Evaluation

We run simulations with share all, share decision rules, and Exanna societies. We propose the
following hypotheses on resolution, social experience, privacy, and flexibility.

To test the hypotheses, we compute the following metrics.
MResolution ∈ [0, 100] Percentage of rationales accepted.
MSocial ∈ [–3, 3] Aggregate payoff that an agent receives for its behavior.
MPrivacy ∈ [0, 1] Proportion of private information retained during an interaction.
MFlexibility ∈ [0, 1] Extent of deviation from an agent’s own goal.

We conduct the independent t-test across the societies. We measure effect size with Glass’s
(1976) ∆ since the societies have different standard deviations (Grissom and Kim 2012). We adopt
Cohen’s (1988) descriptors to interpret effect size: <0.2 indicates negligible, [0.2,0.5) indicates
small, [0.5,0.8) indicate medium, and >0.8 indicates large effect.

5.5 Results

Table 5.6 summarizes the simulation results and the statistical analysis for our hypotheses. Sum-
marily, Exanna offers better social experience, higher conflict resolution, and improved flexibility
indicating that Exanna agents learn to act for greater societal good. The observed results follow our
intuition that value-aligned rationales are more convincing. However, if an agent prefers to keep
certain information private, deviation from goals is expected. Share All and Share Decision Rules
societies results further indicate that more information in rationale is not always useful.

HResolution Figure 5.1 compares conflict resolution in various societies. Exanna offers better con-
flict resolution (p < 0.001; ∆ > 0.8, indicating a large effect) than other societies. This result rejects
the null hypothesis corresponding to HResolution. We observe that, in scenarios where providing a
rationale do not convince others, Exanna agents are more flexible to deviate from their own goals to
resolve conflicts.
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Figure 5.1: Comparing the resolution (MResolution) in various agent societies. The Exanna agent
society has better resolution (Glass’ ∆ > 0.8; p < 0.001) than the baseline societies.

HSocial Experience For HSocial Experience, we measure the overall payoffs of agents in a society. An
agent’s payoff includes personal payoff from its action and the feedback from its interaction.
Figure 5.2 compares the social experience for Share All, Share Decision Rules, and Exanna agent
societies. We find that Exanna yields better social experience (p < 0.001; ∆ > 0.8, indicating
a large effect)) than other societies. Specifically, Exanna agents receive better feedback from
other agents who receive their rationales. This result reject the null hypothesis that corresponds to
HSocial Experience.

On closer analysis, we observe that Exanna agents receive more negative sanctions than other
societies initially but soon learn to deviate from their goals.

Figure 5.3 plots the payoffs of the actors who select actions, explain their behaviors, and receive
feedback from observers in Share All, Share Decision Rules, and Exanna agent societies. Figure 5.4
shows the payoff from the observer who reacts to the actor’s behavior in Share All, Share Decision
Rules, and Exanna agent societies. The freedom-loving agents within Exanna society encounter
more adverse feedback than other societies initially. However, some of them quickly adapt and begin
to divert from their original goals. As a result of the behavioral change made by freedom-loving
agents, there has been an enhancement in the feedback received by health-freak agents.

HPrivacy Exanna agents better retain their privacy (p < 0.001; ∆ > 0.8, indicating a large effect)
compared to Share All or Share Decision Rules agents. This analysis result reject the null hypothesis
that corresponds to HPrivacy.

Although both Share Decision Rules and Exanna society share learned rules as rationales,
Exanna agents aligns rationales to the receiver’s values and limits the shared private information to
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Figure 5.2: Comparing the social experience (MSocial) in various societies. Exanna agent society
has better experience (Glass’ ∆ > 0.8; p < 0.001) than other baselines.

values that agents appraise. A rationale stating causal attribution with minimum private information
but aligned with agents’ values is sufficient to explain behaviors.

HFlexibility We compare agents’ flexibility of goals to evaluate HFlexibility. Figure 5.5 compares
MFlexibility for Share All, Share Decision Rules, and Exanna agent societies. We find that Exanna
offers higher flexibility (p < 0.01; ∆ > 0.8) than Share Decision Rules society. Although the mean
flexibility in the Share All society is higher than in the Exanna society, this difference is not
significant (p > 0.05).

Figure 5.6 compares MFlexibility by agent types in Share All, Share Decision Rules, and Exanna
agent societies. Referring to Figure 5.4, the freedom-loving agents compromise on goals, thereby
enhancing flexibility and enriching social experience.

Emerged Norm A norm emerges when the proportion of agents adhering to a particular behavior
surpasses a threshold. We consider 90% as the threshold (Delgado 2002). We observe that compared
to Share All and Share Decision Rules societies, Exanna promotes more general norms. For instance,
the following norms emerged only in Exanna .

{preference = ¬Wear , InteractWith = Colleague ,
location=OFFICE} => Wear

{OberverAgentType = FREEDOM , InteractWith = Colleague ,
location=HOSPITAL} => Wear

Tables 5.7 and 5.8 list the norms that emerge in the simulations. An emerged norm is a rule
adopted by more than 90% of agents in one society.
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(a) Actor payoff for health-freak agents
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Figure 5.3: Comparing the actor payoff by agent types in various agent societies. Actors are agents
who act and receive feedback from others. Health-freak agents in each society have similar actor
payoffs. The freedom-loving agents in Exanna society have lower actor payoffs (Glass’ ∆ > 0.5;
p < 0.001) than the baseline societies.

5.6 Conclusions and Directions

In human-centered AI systems, considerations for values are paramount in decision making and
providing justifications for decisions made. AI agents must consider their stakeholders and accom-
modate human factors in their reasoning. We demonstrate via a multiagent study how we could
create agents who incorporate values in decision making and in rationale generation and evaluation.
Our results are consistent with our hypotheses. Value-aligned rationales offer better social experi-
ence and higher conflict resolution. While value-aligned rationales wrap partial information, agents
learn to deviate from their goals to protect their privacy. Specifically, agents who receive rejections
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(a) Observer payoff for health-freak agents
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Figure 5.4: Comparing the observer payoff by agent types in various societies. Observers give
feedback based on observed behaviors and received rationales. The health-freak and freedom-loving
agents in Exanna society have better observer payoffs (Glass’ ∆ > 0.8; p < 0.001) than the baseline
societies.

from others learn to be flexible to some extent to improve cooperation.

Assumptions and Limitations We make simplifying assumptions. First, agents can identify
other agents’ types. Second, agent types indicate their values which guide their behaviors. These
assumptions may not apply in all cases but are essential when interacting with other agents.

While humans expect agent behaviors to align with human values, we assume value-aligned
rationales best justify agent behaviors. In addition, although human values can change over time,
we assume values will remain constant throughout our work.

In the simulation study, we limit value preferences to two values: health and freedom, to
demonstrate how value preferences shape behaviors. A real-world scenario may include more
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Figure 5.5: Comparing flexibility (MFlexibility) in various agent societies. Exanna society shows
higher flexibility (Glass’ ∆ > 0.8; p < 0.05 for Share Decision Rules society but p > 0.05 for Share
All society) than baseline societies.

intertwined values that are hard to quantify and tell which influences the decision more.
While the first step of value-aligned AI involves deducing values (Liscio et al. 2021, 2023) from

stakeholders, our emphasis lies in illustrating how value-driven rationales shape agent behaviors.

Future Directions First, to include information cost in decision making. Different information
may have different costs, which may change agents’ final decisions. For instance, sharing tax
data and sharing interest pose significantly different costs. An agent may be fine to share its
interest but keep the tax data to itself. Second, to enable agents to decide what to share. In some
cases, information suppression may be desirable. Third, to include rationales in decision-making
instead of supplementary information. Having rationales as part of the decisions may increase the
flexibility of an agent. Fourth, build an ontology to associate information with values, which we
model as attributes. An ontology helps to model varied attributes or concepts and their intertwined
relationships. While Exanna enables value-driven rationales and focuses on the decisions of a single
agent, one future direction is to promote values and norms in a multiagent system.
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(a) Flexibility for health-freak agents

0K 10K 20K 30K
Steps

0.0

0.2

0.4

Fl
ex

ib
ilit

y

(b) Flexibility for freedom-loving agents

Figure 5.6: Comparing the flexibility by agent types in various agent societies. The freedom-loving
agents in Exanna society has higher flexibility (Glass’ ∆ > 0.8; p < 0.001) than the baseline
societies.
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Table 5.6: Results: Comparing mean (X̄) and standard deviation (σ ) social experience, resolution,
privacy, and flexibility in various societies and agent types. p is p-value from t-test. MSocial has two
subclasses, actor payoff and observer payoff.
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Table 5.7: Emerged norms in agent societies (1). Common means the norms emerge in each society.

Society
Norm

Premise Consequence

Common

Risk = NONE;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Risk = NONE;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

Risk = RISK;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Risk = RISK;
preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

Share All

Risk = NONE;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Share Decision Rules

preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR
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Table 5.8: Emerged norms in agent societies (2). Common means the norms emerge in each society.

Society
Norm

Premise Consequence

Exanna
preference = ¬WEAR;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

preference = ¬WEAR;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

preference = ¬WEAR;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

OberverAgentType = FREEDOM;
InteractWith = COLLEAGUE;
location = HOSPITAL

WEAR

Risk = RISK;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR

Risk = NONE;
OberverAgentType = HEALTH;
InteractWith = COLLEAGUE;
location = OFFICE

WEAR
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CHAPTER

6

CONCLUSION

This dissertation tackles the challenges of accommodating humans in the loop, i.e., emotion as
sanctions, social signals as responses to norms, and human values as guidance of behaviors. We
present a framework for a dynamic MAS that actively involves human participation. Our framework
aims to accommodate humans in the loop and operates in dynamic environments. The human factors
we target are expressed emotions, social signals, social value orientation, and values.

6.1 Answering the Research Questions

Chapter 2 presents Noe, an agent framework that comprises emotional responses to the norma-
tive reasoning process. We show how emotion modeling in Noe enables the promotion of norm
compliance and the improvement of societal welfare.

In Chapter 3, we define social signals as sanction, tell, and hint. Ness gives an agent framework
that models normative information from social signals to support norm emergence. Modeling soft
signals such as hints or messages prevents unfavorable outcomes, such as negative sanctions and
straying from goals, while leading to greater satisfaction than the baseline agent societies despite
requiring an equivalent amount of information.

Fleur (Chapter 4) presents a framework that operationalizes the concept of Social Value Orien-
tation (SVO). SVO provides agents with different preferences over resource allocations between
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themselves and others. Aligning with SVO enables better social experience and robust norm
emergence.

Chapter 5 proposes Exanna , a framework that incorporates values in decision-making, rationale
generation, and reasoning over rationale. Constructing rationales based on agent values enhances
social experience and conflict resolution with some tradeoffs with goal deviation.

6.2 Future Directions

This work suggests numerous significant and captivating expansions. This section delineates two
primary forthcoming directions related to this dissertation.

Human-Centered Autonomous Systems

This research delves into investigating the impact of various elements of human factors (including
emotional responses, social signals, social value orientation, and human values) on the decision-
making process of an individual agent. Our future directions include further understanding the
causal connections between decisions and human factors.

An intriguing direction involves exploring how social signals and various social norms are
interconnected. Furthermore, while our work focuses on individual agent behaviors, expanding
agent modeling from the micro to the macro level can provide insights into comprehending and
building pertinent norms. To be more precise, the micro level refers to an individual agent’s
perspective, while the macro level pertains to perspectives within multiagent systems (Chopra
and Singh 2018; Woodgate and Ajmeri 2022). One possible beginning for expanding upon this
study involves investigating the process of modifying norms to foster particular values within
MAS. Another possible direction is to understand how norms can lead to richer examples of group
structure, which has long been studied on theoretical grounds (Singh 1991, 2011) and more recently
in connection with language (Kalia et al. 2013, 2017).

Evolution of Social Norms

Intuitively, individuals driven by self-interest would not take action to achieve the collective interest.
However, real-world observations often defy this intuition. This gap has piqued the interest of
researchers in the field of social science. Since Axelrod and Hamilton (1981) proposed the model
of the evolution of cooperation, evolutionary theory has been applied to study the evolution of
cooperation (Axelrod and Dion 1988; Nowak 2006) or collective actions (social norms) (Poteete
et al. 2010). By combining principles from evolutionary biology and game theory, evolutionary game
theory (EGT) studies the dynamics of social behaviors among a population within the framework of
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evolutionary processes over time (Hofbauer and Sigmund 1998). An intriguing direction is studying
the emergence and survival of agents with different values, building on work, such as (Kalia et al.
2019; Collins et al. 2023), that relates norms and emotions.

Rationales Behind the Outcomes of AI Systems

Our future research extensions include delving deeper into the costs associated with information and
deliberate information concealment while providing rationales for decisions (Falcone and Castel-
franchi 2012; Kalia et al. 2015). In reality, the value of information can vary significantly. Exploring
the impact of varying information costs on decisions could enhance the accuracy and reliability of
action recommendations and the formulation of rationales. In terms of information concealment,
information suppression may be permissible for the sake of strategic advantage, security, and ethical
considerations. Formulating flexible rationales based on context is one promising direction because
such rationales are central to achieving trusted and trustworthy AI (Singh and Singh 2023b). Lastly,
our future directions include developing agents capable of determining both the content and timing
of information sharing, thereby enhancing the flexibility of strategies.
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APPENDIX

A

APPENDIX: NESS

A.1 Reproducibility

Table A.1 lists the parameters in our simulation.

Table A.1: Hyperparameters.

Parameter Value Comment

Learning rate α 0.001
Discount factor γ 0.9
Simulation step per action 1
Population size 100
Infection % 0.3 The default fraction of infected agents in a soci-

ety
Certainty of potential reward 0.3 Value for κ for certainty of possible sanctions

from normative information through hints
Certainty of potential reward 0.5 Value for κ for certainty of possible sanctions

from normative information messages

93



A.2 Additional Results

Figure A.1 plots the total number of infected agents in various societies.
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Figure A.1: Comparing the average number of infections (MInfections) in various societies. Ness
yields fewer infections on average than other societies. The effect is large.

Figures A.2, A.3, A.4, and A.5 shows plots for the number of infected, deceased, healthy, and
vaccinated agents in the first 500 steps in various societies, where the differences are noticeable.

Figure A.6 shows the number of agents in isolation and quarantine in various societies in the
first 500 steps of the simulation.
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Figure A.2: Comparing the number of infected agents in the first 500 steps. The differences are
noticeable here.

−50 0 50 100 150 200 250 300 350 400 450 500

0

10

20

30

Time in steps

D
ec

ea
se

d

PRIMITIVE PENALTY EMOTE TELL Ness

Figure A.3: Comparing the number of deceased agents in the first 500 steps. The differences
between Ness and EMOTE are noticeable here.
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Figure A.4: Comparing the number of healthy agents in the first 500 steps. The differences are
noticeable here.

−50 0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

Time in steps

V
ac

ci
na

te
d

PRIMITIVE PENALTY EMOTE TELL Ness

Figure A.5: Comparing the number of vaccinated agents in the first 500 steps. The differences
between Ness and other societies are noticeable here.
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Figure A.6: Comparing the number of agents in isolation (MHome) and the number of agents in
quarantine (MQuarantine) in various societies in the first 500 steps.
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APPENDIX

B

APPENDIX: EXANNA

B.1 Appendix: Agent Interaction

Figure B.1 demonstrates the interaction between agents. Interactions within Exanna involve two
agents, with the actor initiating actions based on its beliefs and goals and the observer responding to
these actions. Beliefs are an agent’s understanding of the world, which includes facts, information,
observations, and assumptions. Partial observability can lead to agents developing distinct or even
contradictory beliefs. Before the observer imposes a sanction, the actor presents rationales for its
behaviors, which the observer then assesses.

B.2 Appendix: Procedures of XCS

The overall process of XCS includes the following sub-processes.

• Matching: A process that matches the current context and all rules/classifiers to generate a match
set. For instance, in our running example , the match set for Bella may include (1) {Risk = Low}
⇒ Wear [fitness = 0.3], (2) {Risk = Low} ⇒ ¬Wear [fitness = 0.7], (3) {OtherAgentType =
Health}⇒Wear [fitness = 0.8], and (4){OtherAgentType = Health}⇒¬Wear [fitness = 0.2].
The fitness is based on the accuracy of each rule’s reward prediction.
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Figure B.1: Interactions between Exanna agents. An agent forms its beliefs based on its observa-
tions of public contextual attributes and the beliefs revealed by other. The agent formulates goals
according to its beliefs, subsequently utilizing these goals to make decisions and provide rationales
for those decisions. Upon receiving the rationale, other agents evaluate and decide whether to accept
it.

• Covering: A process that guarantees diversity via adding a random classifier whose conditions
match the current context. For instance, adding {Risk = Low, Relationship = Friend}⇒¬Wear
to the rule set.

• Action selection: XCS selects actions with pure exploration or pure exploitation with ε greedy.
If not in exploration mode, this process returns the action with the highest fitness-weighted
aggregation of reward.

fitnessa =
rule

∑
i

fitnessi×numerosityi×predicted_rewardi (B.1)

where a ∈ A and A is the action space. Rules represent all rules applied to the context and for
action a. With the above example and formula, the agent would choose not to wear a mask due to
fitness¬Wear > fitnesswear.

• Formation of action set: It includes all classifiers that propose the chosen action based on the
match set. For instance, {Risk = Low}⇒¬Wear, {OtherAgentType = Health}⇒¬Wear, and
{Risk = Low, Relationship = Friend}⇒¬Wear.

• Updating classifier parameters (Urbanowicz and Browne 2017): An agent updates the rule
parameters (e.g., accuracy and fitness) based on the received payoff. The following equation
updates the predicted reward, where p is the predicted reward, β is the learning rate, and r is the
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received reward.
p← p+β (r− p) (B.2)

The prediction error ε is updated with the following equation.

ε ← ε +β (|r− p|− ε) (B.3)

The fitness of a rule is based on its accuracy, which is inversely proportional to the prediction
error. We update the accuracy kappa with the following formula.

κ =

1 if ε < ε0

α( ε

ε0
)−ν otherwise,

(B.4)

where α is the scaling factor that raises a non-accurate rule to be close to an accurate rule. ε0

is the threshold of prediction error below which the prediction error of a rule is assumed to be
zero. ν defines how accuracy is related to prediction error and aims to help differentiate similar
classifiers. For fitness calculation, we next calculate the relative accuracy κ ′ of each rule.

κ
′ =

κ

∑cl∈[A]κcl
(B.5)

where [A] represents the corresponding action set. Finally, the fitness update of a rule is as follows.

F ← F +β (κ ′−F) (B.6)

where F is the fitness of a rule.

• Subsumption: A process that replaces offspring rules with more general parent rules if it exists.
Otherwise, save the offspring rules. Specifically, a more general rule yields a minor prediction
error. For instance, if rule {Risk = Low}⇒¬Wear has less prediction error than rule {Risk =
Low, Relationship = Friend}⇒¬Wear, the former rule would replace the later rule and increases
the numerosity.

• Deletion: Each action set has the same maximum number of rules. XCS removes the low-fitness
rules.
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B.3 Appendix: Payoff Calculation with Values

Whereas preferences define the tendency of an individual to make a subjective selection among al-
ternatives, values define the important things to an individual. Although both values and preferences
are context-specific, values may transcend contexts (Liscio et al. 2021).

Each agent stores values in a tuple where each value maintains a corresponding Mindividual. Since
agents do not make decisions with single values but with tradeoffs among multiple related values,
we aggregate value preferences when constructing a payoff (Ajmeri et al. 2020). Below, f is the
aggregated payoff with all corresponding values after selecting strategy Rx when the other player
selects strategy Cy from Mindividual.

f =
values

∑
i

vi× rRxCy (B.7)

We model interactions as games with payoffs f from the aggregation of Mindividual.

B.4 Appendix: Reproducibility Details

Table B.1 lists the hyperparameters we set for our simulations, where we used the standard setting
from (Urbanowicz and Browne 2017). The codebase of our simulation is available publicly.

Table B.1: Hyperparameters for our settings.

Parameter Value

Population size 200
Learning rate 0.1
Don’t care probability 0.3
Accuracy threshold 0.01
Fitness exponent 5
Genetic algorithm threshold 25
Mutation probability 0.4
Crossover probability 0.8
Experience threshold for deletion 20
Experience threshold for subsumption 20
Fitness falloff 0.1
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