Human Centricity and Norm Awareness in Cognitive Systems

Ph.D. Dissertation

Sz-Ting "Christine" Tzeng

(Under the supervision of Professor Munindar P. Singh)

2 August, 2023

Department of Computer Science

NC STATE UNIVERSITY

Education

- Ph.D. in Computer Science, North Carolina State University, 2018
 Fall to present
 - Norm Emergence in Systems of Cognitive Agents with Emotions and Values, proposed October 2021
 - Impact of Agent Interactions on Policy Selection in Social Dilemma Simulations, qualified September 2020
- M.Sc. in Computer Science, North Carolina State University, May 2018
- B.Sc. in Computer Engineering, National University of Tainan, Taiwan, June 2010

Introduction: Motivations

- Humans and agents form a multiagent system
- Norms regulate agent behaviors with sanctions
- What happens if humans are in the loop?
- What happens if human needs or the environment change over time?

Introduction: Challenges for Humans in Loop

- Human factors influence decisions and experience
 - The five human factors: social, cognitive, emotional, physical, and cultural
- Sanctions are often subtle, e.g., emotional expression or social exclusion
- Social signals have emerged in the form of verbal messages or subtle hints, transmitting normative information
- Values differ from person to person
- People need to comprehend and trust in Al output

Introduction: Challenges for Changing Environment

- Changing requirements or environment
 - \bullet More interconnection in MAS \to Complexity of interactions increases drastically
 - Norms may change over time or over the environment

Introduction: Research Objective

To accommodate humans in the loop and operate in dynamic environments

Introduction: Research Statement

Thesis Statement

Al systems that consider human factors, such as **emotional expressions**, **social signals**, **social value orientation**, **and valuealigned decisions and rationales**, are more adept at accommodating humans in the loop, thereby enhancing the social experience

- Investigate emotional responses of agents to the outcomes of interactions [COINE @ AAMAS'21]
- Investigate messages and hints as drivers of subtle social learning [In prep for JAIR]
- Investigate the influences of social value orientation [COINE @ AAMAS'22]
- Investigate value-aligned decisions and rationales [In prep for JAAMAS]

Cognitive Framework

Key concepts

- Notions of social norms
 - Prescriptive norms describe how an individual should behave
 - Descriptive norms describe how most agents actually behave
 - Representation:
 - Norm(subject, object, antecedent, consequent) (Singh, 2013)
- Norm emergence: The majority of agents in society choose the same action
- Cooperation: Conforming to the existing norms or most agents' behaviors

General Interaction Among Agents In MAS

- *Dashed rectangles apply when any explanation involves
- *Solid rectangles indicate the processes of general interactions

Fleur: Social Values Orientation

for Robust Norm Emergence

Fleur: Scenario

 $Source: \ https://twitter.com/springertoons/status/1281992099538165761$

Fleur: Introduction and Motivation

Motivations

- Interconnection in MAS indicates that one individual's behavior may affect another
- Social Value Orientation (SVO): An individual's preference for resource allocation between self and others
- Humans with different values evaluate the chosen actions subjectively and act to maximize their utility
- Objective: Incorporate individual preferences over self-interests and collective interests into decision-making
- RQ_{SVO}: How do social preferences, specifically social value orientation, influence norm compliance?

Fleur: Cognitive Framework

Fleur: SVO Ring with Reward Angle

Reward function of agent i: $reward_i = r_i \cdot \cos \theta + r_{-i} \cdot \sin \theta$

Fleur: Evaluation Design with COVID Simulations

- Scenario: Agents interact with one another and decide whether to wear a mask based on preference, health state, and SVO
- Simulate with varying agent societies: Altrustic, Prosocial, Proself, Competitive, and Mixed society
- · Characteristics of agent society
 - Prescriptive norm: Mask-wearing mandate
 - Different distribution of social value orientation among agents
 - Agents' health states and the chosen action determine the payoff

Fleur: Metrics

- Compliance
 - M_{Compliance}: The percentage of agents who satisfy the existing norm
- Social Experience
 - M_{Social Experience}: The total payoff of the agents in a society
- Invalidation
 - M_{Invalidation}: The percentage of agents who do not meet their preferences in a society

Fleur: Hypotheses

- H_{Compliance}: Social value orientation positively affects norm compliance with prosocial norms
- H_{Social Experience}: The distribution of social value orientation positively affects social experiences in a society
- H_{Invalidation}: Social value orientation negatively affects the tendency to meet personal preference and social experiences

Tests for Statistical Significance

- Independent t-test
- Glass's ∆

Result: Prosocial and Altruistic agents societies have higher compliance. A competitive infected agent may choose not to wear a mask when interacting with other healthy agents, leading to lower compliance in the mixed society

Compliance: % of agents who satisfy the existing norm

	S_{mixed}	$S_{altruistic}$	$S_{prosocial}$	$S_{selfish}$	$S_{competitive}$
Compliance	63.40%	69.70%	70.25%	65.10%	54.08%

Result: The mixed society has similar results as the selfish society. Whereas 50% of the mixed-agent society agents are altruistic and prosocial agents, the 25% of competitive agents would choose to minimize others' payoff without hurting their self-interests

Social Experience: The total payoff of the agents in a society

	S_{mixed}	$S_{altruistic}$	$S_{prosocial}$	$S_{selfish}$	$S_{competitive}$
Social Experience	0.448	0.554	0.566	0.470	0.221

Result: The selfish and competitive agents in the mixed society decreased the invalidation

Invalidation: % of agents who do not meet their preferences in a society

	S_{mixed}	$S_{altruistic}$	$S_{prosocial}$	$S_{selfish}$	$S_{competitive}$
Invalidation	0.296	0.334	0.323	0.269	0.289

Fleur: Summary

Study Summary

Incorporating Social Value Orientation enables better social experience and robust norm emergence

- Aligning with social preferences enables AI to make ethical decisions and be responsible for human needs
- Altruistic and prosocial agents adhere to the prosocial norm and enjoy more positive social experiences at the cost of themselves
- Policy makers may define appropriate sanctions to motivate the competitive and selfish agents to follow the norms

Exanna: Decision and Rationale

with Values

Exanna: Scenario

 $Source: \ https://www.latimes.com/opinion/story/2022-08-07/mask-wearing-public-anger-comic$

Exanna: Introduction and Motivation

Motivations

- Agents provides rationales for their decisions would be interpretable and reliable
- Justifying behavior via revealing information can resolve social conflict and enhance individual gain
- Verbose rationales may be diverging and not convincing, leading to information overload
- Invaded or uncomfortable feelings for privacy breaches
- Rationales or information aligned with values best justify one's behaviors

Exanna: Objective and RQs

- Objective: Incorporating values into behavior justification
- RQs
 - RQ_{Goal Adherence}: Do value-aligned rationales increase adherence to the original goal?
 - RQ_{Conflict Resolution}: Do value-aligned rationales increase the social resolution?
 - RQ_{Privacy Loss}: Does value-aligned rationales reduce privacy loss?

Exanna: Cognitive Framework

Compare to Fleur

Exanna: Key Concepts

- Context:
 - The information that characterizes the situation of an entity
 - Include observable and nonobservable attributes (keep private from others)
 - Some attributes associated with values
- Decision rule: The mapping between an observation of context and a reasonable action, represented as if-then logic
 - Format: if antecedent then consequence

```
\{InfectionRisk=\!\!No\ risk\ ,\ InteractWith=\!\!Colleague\} \implies Not\ Wear
```

- Rule Learning: Evolving rules from interactions or dataset
- Value preference
 - A preference order over different values for one context
 - Numbers in one value preference add up to 1

Exanna: Method (1)

- Decision making
 - Aggregated payoff with all corresponding values

$$f = \sum_{i}^{values} v_i \times r_{RxCy} \tag{1}$$

Agent 1:Agent 2	C1	C2
R1	r _{R1C1}	r _{R1C2}
R2	r_{R2C1}	r_{R2C2}

Exanna: Method (2)

- Rationale Generation
 - Evolve and learn decision rules as the base rationale with XCS, a learning algorithm combines reinforcement learning and genetic algorithm
 - Rule discover: Crossover and mutation creates more general or more specific rules by randomly adding or removing factors in antecedent
 - Subsume rules: Replace with a more general rule that has less prediction error
 - Action selection: Select the action with best-aggregated fitness
 - Reveal necessary information in rationales
 - Remove private factors that are not related to presented values from the aggregated rules

Exanna: Method (3)

- Rationale Evaluation
 - Update beliefs based on the received rationale
 - Make an analogous decision based on beliefs
 - Accept the rationale if the decision matches the observed action
 - Otherwise, reject the rationale
 - Acceptance and rejection of rationales lead to sanctions

Exanna: Evaluation Design with COVID Simulations

- Scenario: Agents move randomly and decide whether to wear a mask based on personal preference, health states, and value preference
- Simulate with varying agent societies: Share All, Share Decision Rules, and Share Value-Aligned Rules society
- Characteristics of agent society
 - Different strategies to explain agents' behaviors
 - Evaluate observed behaviors referring to received rationales
 - Agents form goals based on values
 - 50% of agents value health and 50% of agents value freedom in each society

Exanna: Metrics

Measures:

- Goal Adherence
 - M_{Goal Adherence}: The degree of adherence to each agent's goal
- Conflict Resolution
 - M_{Conflict Resolution}: The percentage of conflict resolution in society
- Social Experience
 - M_{Social Experience}: The aggregation of payoff an agent receives for its behavior
- Privacy Loss
 - M_{Privacy Loss}: The proportion of hidden information shared during an interaction

Exanna: Hypotheses

- H_{Goal Adherence}: Exanna provides higher goal adherence than baseline societies
- H_{Conflict Resolution}: Exanna provides higher conflict resolution than baseline societies
- H_{Social Experience}: Exanna provides better social experience than baseline societies
- H_{Privacy Loss}: Exanna takes lower privacy loss compared to baseline societies

Tests for Statistical Significance

- Independent t-test
- Glass's ∆

Results: Exanna Yields Less Privacy Loss When Providing Rationale

Results: Exanna Has Higher Conflict Resolution in Cases Where Agents Deviate from their Goals

Exanna trades goal adherence for conflict resolution

Goal Adherence

Results: Exanna Yields Better Social Experience and Conflict Resolution at the Expense of Goal Adherence

Results: Exanna Yields Lower Goal Adherence than Other Societies

- Exanna generates lower goal adherence than Share-Decision Rules society For less convincingness from being conservative
- Share All society has lower goal adherence than Share-Decision Rules society for distraction from information overload

Exanna: Summary

Study Summary

Providing rationales with the concerns of value preferences leads to (1) deviation from goals, (2) higher conflict resolution, (3) less private loss, and (4) better social experience

- Value-aligned explanations ensure the AI system's decisions are consistent with human values
 - Highlight what an agent cares
 - No unnecessary sacrifice of private attributes

Conclusion

- Considering human factors leads to higher social experience in terms of a single agent
- Regarding MAS, Considering human factors promotes cooperation

Future Directions

- Going deeper into understanding the causal connections that exist between decisions and human factors
- Investigate how different costs of information influence decisions for more precise and reliable action suggestions and rationale construction
- Information suppression may be acceptable in some cases
- Having agents decide what to share and when to share increases strategies' flexibility
- Investigate the relationship between social norms and different social signals

Thank You

This research is based upon work supported by the National Science Foundation under Grants No. IIS-1908374 and No. IIS-2116751

General Reproducibility Details

Hardware:

- 32 GB RAM
- GPU NVIDIA GTX 1070 Ti

Framework:

- MASON (Java)
- Mesa (Python)

Noe: Enforcing Social Norms

with Expressed Emotions

Noe: Introduction and Motivation

 $Source: \ https://www.shutterstock.com/image-illustration/3d-smart-red-man-jumps-queue-134805779$

• Motivation:

- Sanctions in real world are usually subtle
- General thinking and problem-solving incorporate the influence of emotions (Simon, 1967)
- Objective: Incorporate expressed emotions in decision-making
- RQ_{emotion}: How does modeling the emotional responses of agents to the outcomes of interactions affect the emergence of norms and social welfare?

Noe: Cognitive Framework

Noe: Evaluation with Line-Up Simulations

- Simulate with varying agent societies: Obedient, Anarchy, Sanctioning and Noe society
- Appraisal: Based on norm satisfaction or violation
- Characteristics of agent society
 - Prescriptive norm: Line up to get service
 - Sanctions and expressed emotions that emerge from the evaluation of chosen actions
 - Expressed emotions serve as intrinsic reward (self-directed emotion)
 and extrinsic reward (other-directed emotion)

Noe: Metrics

Measures:

- Social welfare
 - M_{Deceased}: Cumulative number of agents deceased
 - $\bullet~M_{Health}\colon$ Average health of the agents
- Norm satisfaction
 - M_{Cohesion}: Proportion of norm instances that are satisfied
- Social experience
 - M_{Waiting time}: Average waiting time of agents in the queues

Noe: Simulation Results

		Obedient	Anarchy	Sanctioning	Noe
MDeceased	X	55.30	81.60	169.30	54.00
)ece	p-value	< 0.01	< 0.01	< 0.01	_
Σ	Δ	0.65	3.10	15.53	_
ţ	X	79.27	79.50	86.26	79.00
M_{Health}	p-value	0.52	0.46	8.45	_
Σ	Δ	0.18	0.21	3.34	_
sion	X	_	0.22	0.88	0.99
$M_{Cohesion}$	p-value	_	< 0.01	< 0.01	_
Ĭ	Δ	_	102.43	13.67	_
ime :	X	8.95	5.45	2.55	8.95
ng T	p-value	0.98	< 0.01	< 0.01	_
Mwaiting Time	Δ	0.01	40.82	76.68	_
Ź					

Results: Fewer Agents Die in Noe than in Other Societies

Metric: Cumulative number of agents deceased

Results: Sanctioning Society Yields Higher Health State ... But at the Expense of More Deaths

Metric: Average health state of the agents

Results: Noe Yields Higher Cohesion than Other Agent Societies

Metric: Cohesion (Proportion of norm instances that are satisfied)

Results: Noe Has Similar Waiting Time as Obedient Society

Metric: Average waiting time of agents in the queues

Noe: Summary

Study Summary

Agents who incorporate expressed emotions are more willing to comply with norms than those who do not

- Expressed emotions act as a positive or negative reinforcement mechanism for specific behaviors
- Noe enables the incorporation of expressed emotions as sanctions in decision-making

Ness: Normative Information

from Tell and Hint

Ness: Scenario

When there's a norm of not wearing a mask . . .

Source: https://www.latimes.com/opinion/story/2022-08-07/mask-wearing-public-anger-comic

Ness: Introduction and Motivation

- Motivations
 - Social signals are reactions to norm satisfaction or norm violation
 - Social signals provide natural drivers for norm emergence
 - Normative information conveyed through a social signal promotes cooperation in MAS
 - Social signals can be realized in three main ways: sanction, tell, and hint
- Objective: Incorporate normative information from social signals into decision-making
- RQ_{information}: How does considering soft signals such as hints and tell in addition to sanctions influence norm emergence?

Ness: Cognitive Framework

Compare with Noe

Ness: Key Concepts

 Reward Shaping (Ng et al., 1999) provides additional "shaping" reward from deterministic reward function

$$r'_{final} = r + F$$

where r is the standard reward function in reinforcement learning and F is the shaping reward function

• With messages or hints, F defines the difference of potential values

$$F(s, a, s', a') = \gamma \Phi(s', a') \kappa - \Phi(s, a)$$

where Φ is a potential function that gives hints on states. κ defines the certainty of potential reward from the knowledge or information

Ness: Evaluation with COVID Simulations

- Simulate with varying agent societies: Primitive, Sanction, Hint, Tell, and Ness society
- Characteristics of agent society
 - A combination of three kinds of social signals
 - Prescriptive norm: Stay self-quarantine if infected
 - Sanction (Material punishment): Send to forced quarantine at a low probability

Ness: Disease Model

Susceptible-Exposed-Infected-Recovered-Vaccinated (SEIRV) model (Yang and Wang, 2020; Annas et al., 2020)

- ullet α controls the probability to be infected based on vaccination
- \bullet $\ensuremath{\beta}$ controls the recovering rate based on agent activity
- Healthy agents, cover susceptible, exposed and recovered, are not infected
- Infectious includes three subclasses: Asymptomatic, mildly symptomatic, and critical symptomatic

Ness: Agent Societies

Society	Sanctioning	Shaping Reward	Emotion
Baseline 1. PRIMITIVE	X	×	X
Baseline 2. SANCTION	✓	×	X
Baseline 3. Tell	✓	✓	X
Baseline 4. HINT	✓	×	✓
Ness	✓	✓	✓

Shaping Rewards come from normative information

Ness: Information Balance

Societies: Signals	Sanction	Tell	Hint	Hint w/ shaping reward
PRIMITIVE	0%	0%	0%	0%
SANCTION	38%	0%	0%	0%
Tell	20%	36%	0%	0%
HINT	20%	0%	12%	0%
Ness	20%	0%	0%	10%

- More learning channels improve learning efficiency
- We balance the information an agent can access by adjusting the expected payoff to achieve comparability

Ness: Metrics

- Disease control
 - M_{Healthy}: The percentage of agents who are healthy
 - M_{Infected}: The percentage of agents who are infected
 - M_{Deceased}: The percentage of who are deceased
 - M_{Total infections}: Total number of infections in societies
 - \bullet $M_{Vaccinated}\colon$ Percentage of vaccinated agents
- Goal
 - M_{Goal}: The average goal satisfaction among agents
- Isolation
 - M_{Isolation}: The percentage of self-isolation among infected agents
 - MForced quarantine:
 - · Number of agents who are forced to quarantine at home
 - This measure maps to the sanction signal type

Results: Ness Yields Better Disease Control and Higher Vaccination Rate

Results: Ness Yields Better Goal Satisfaction Than Tell, Sanction, and Primitive Societies

Results: Ness and Noe Yield Higher Norm-Compliance and Lower Forced Quarantine than Other Societies

Ness: Detailed Results (1)

		PRIMITIVE	SANCTION	Hint	TELL	Ness
	$M_{Infected}$	13.281	2.634	0.411	4.205	0.157
	Δ	-0.973	-0.271	0.085	-0.330	_
_	$M_{Healthy}$	46.294	77.602	96.622	65.082	98.750
ase control	Δ	18.259	3.414	0.776	4.784	_
	$M_{Deceased}$	41.034	19.764	2.967	30.713	1.093
H _{Disease}	Δ	-3.346	-6.123	-7.450	-5.316	_
	$M_{Infections}$	48.335	13.840	2.221	20.474	0.891
	Δ	-2.664	-6.925	-10.730	-5.842	_
	$M_{Vaccinated}$	82.452	36.743	11.185	37.430	98.734
	Δ	1.518	18.181	143.254	13.261	_

Ness: Detailed Results (2)

	PRI	MITIVE	SANCTION	HINT	TELL	Ness
	$M_{Isolation}$	0.610	0.965	0.993	0.934	0.998
tion	Δ	1.777	0.326	0.101	0.450	_
$H_{Isolation}$	M _{Forced quarantine}		0.026	8.5 <i>e</i> – 04	0.040	1.75 <i>e</i> – 04
エ	p-value	_	< 0.001	< 0.01	< 0.001	_
	Δ	-	-0.268	-0.075	-0.313	-
Goal	M_Goal	0.187	0.262	0.321	0.227	0.311
H	Δ	3.128	3.445	-1.012	3.929	_

Ness: Summary

Study Summary

Ness agents effectively avoid undesirable results and yield higher satisfaction than baseline agents despite requiring an equivalent amount of information

- Normative information from soft signals like hints and messages helps to regulate behaviors
- Incorporating normative information from social signals supports norm emergence

Ness: Hyperparameters

Parameter	Value	Comment
Learning rate α	0.001	
Discount factor γ	0.900	
Simulation step per action	1.000	
Infection %	0.300	The default fraction of infected
		agents in a society
Certainty of potential reward	0.300	value for κ for certainty of pos-
		sible sanctions from normative
		information through hints
Certainty of potential reward	0.500	value for κ for certainty of pos-
		sible sanctions from normative
		information messages

Fleur: Detailed Results (1)

		Compliance	Social Experience	Invalidation
S_{mixed}	X	63.40%	0.448	0.296
	p-value	_	_	_
	Δ	_	_	_
$S_{altruistic}$	X	69.70%	0.554	0.334
	p-value	< 0.001	< 0.001	< 0.001
	Δ	0.660	0.612	0.464
$S_{prosocial}$	X	70.25%	0.566	0.323
	p-value	< 0.001	< 0.001	< 0.05
	Δ	0.718	0.677	0.326

Fleur: Detailed Results (2)

		Compliance	Social Experience	Invalidation
$S_{selfish}$	X	65.10%	0.469	0.269
	p-value	0.218	0.424	< 0.05
	Δ	0.178	0.122	0.329
$S_{competitive}$	X	54.08%	0.221	0.289
	p-value	< 0.001	< 0.001	0.541
	Δ	0.977	1.313	0.088

Fleur: Hyperparameters

Parameter	Value
Population size	40
Simulation step per action	1
Training steps	500,000
Evaluation steps	100
Learning rate α	0.001
Discount factor γ	0.9

Exanna: Processes of XCS

- Matching: A process that matches the current context and all rules/classifiers to generate a match set
- Covering: A process that guarantees diversity via adding a random classifier whose conditions match the current context
- Action selection: This process returns the action with the highest fitness-weighted aggregation of reward if in exploitation mode
- Formation of action set: The action set includes all classifiers that propose the chosen action based on the match set
- Updating classifier parameters: An agent updates the rule parameters (e.g., accuracy and fitness) based on the received payoff
- Subsumption: A process that replaces offspring rules with more general parent rules if it exists and with a minor prediction error
- Deletion: Each action set has the same maximum number of rules and XCS removes the low-fitness rules

Exanna: Hyperparameters

Parameter	Value
Population size	200
Learning rate	0.1
Don't care probability	0.3
Accuracy threshold	0.01
Fitness exponent	5
Genetic algorithm threshold	25
Mutation probability	0.4
Crossover probability	8.0
Experience threshold for deletion	20
Experience threshold for subsumption	20
Fitness falloff	0.1

Exanna: Detailed Results

		Share All	Share Decision Rules	Exanna
M _{Goal Adherence}	X	0.901	0.914	0.885
	p-value	0.083	< 0.01	_
	Δ	-1.594	-2.891	_
M _{Conflict resolution}	X	0.585	0.582	0.604
	p-value	< 0.001	< 0.001	_
	Δ	1.803	3.106	_
M _{Social Experience}	X	0.591	0.624	0.699
	p-value	< 0.001	< 0.001	_
	Δ	1.803	3.106	_
M _{Privacy Loss}	X	1.000	0.999	0.749
	p-value	< 0.001	< 0.001	_
	Δ	∞	$-11,\!896.523$	_

Exanna: Goal Adherence by Agent Types

Exanna: Payoff of Actors by Agent Types

Exanna: Payoff of Observers by Agent Types

References

- Suwardi Annas, Muh Isbar Pratama, Muh Rifandi, Wahidah Sanusi, and Syafruddin Side. Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. *Chaos, Solitons & Fractals*, 139:110072, 2020. doi: 10.1016/j.chaos.2020.110072.
- Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *Proceedings of the 16th International Conference on Machine Learning (ICML)*, volume 99, pages 278–287. Morgan Kaufmann, 1999. doi: 10.1.1.48.345.
- Herbert A. Simon. Motivational and emotional controls of cognition. *Psychological Review*, 74(1):29–39, 1967. doi: 10.1037/h0024127.
- Munindar P. Singh. Norms as a basis for governing sociotechnical systems. TIST, 5(1):21:1–21:23, December 2013. doi: 10.1145/2542182.2542203.

Chayu Yang and Jin Wang. A mathematical model for the novel coronavirus epidemic in Wuhan, China. *Mathematical Biosciences and Engineering MBE*, 17(3):2708, 2020. doi: 10.3934/mbe.2020148.