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Introduction: Motivations

• Humans and agents form a multiagent system

• Norms regulate agent behaviors with sanctions

• What happens if humans are in the loop?

• What happens if human needs or the environment change over time?
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Introduction: Challenges for Humans in Loop

• Human factors influence decisions and experience

• The five human factors: social, cognitive, emotional, physical, and

cultural

• Sanctions are often subtle, e.g., emotional expression or social

exclusion

• Social signals have emerged in the form of verbal messages or subtle

hints, transmitting normative information

• Values differ from person to person

• People need to comprehend and trust in AI output
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Introduction: Challenges for Changing Environment

• Changing requirements or environment

• More interconnection in MAS → Complexity of interactions increases

drastically

• Norms may change over time or over the environment
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Introduction: Research Objective

To accommodate humans in the loop and operate in dynamic

environments
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Introduction: Research Statement

Thesis Statement

AI systems that consider human factors, such as emotional ex-

pressions, social signals, social value orientation, and value-

aligned decisions and rationales, are more adept at accommo-

dating humans in the loop, thereby enhancing the social experience

• Investigate emotional responses of agents to the outcomes of

interactions [COINE @ AAMAS’21]

• Investigate messages and hints as drivers of subtle social learning [In

prep for JAIR]

• Investigate the influences of social value orientation [COINE @ AAMAS’22]

• Investigate value-aligned decisions and rationales [In prep for JAAMAS]
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Key concepts

• Notions of social norms

• Prescriptive norms describe how an individual should behave

• Descriptive norms describe how most agents actually behave
• Representation:

• Norm(subject, object, antecedent, consequent) (Singh, 2013)

• Norm emergence: The majority of agents in society choose the same

action

• Cooperation: Conforming to the existing norms or most agents’

behaviors
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Fleur: Social Values Orientation

for Robust Norm Emergence



Fleur: Scenario

Source: https://twitter.com/springertoons/status/1281992099538165761
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Fleur: Introduction and Motivation

• Motivations

• Interconnection in MAS indicates that one individual’s behavior may

affect another

• Social Value Orientation (SVO): An individual’s preference for

resource allocation between self and others

• Humans with different values evaluate the chosen actions

subjectively and act to maximize their utility

• Objective: Incorporate individual preferences over self-interests and

collective interests into decision-making

• RQSVO: How do social preferences, specifically social value

orientation, influence norm compliance?
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Fleur: Cognitive Framework
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Fleur: SVO Ring with Reward Angle

Reward function of agent i : rewardi = ri · cos θ + r−i · sin θ

Individualistic
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Prosocial
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Fleur: Evaluation Design with COVID Simulations

• Scenario: Agents interact with one another and decide whether to

wear a mask based on preference, health state, and SVO

• Simulate with varying agent societies: Altrustic, Prosocial, Proself,

Competitive, and Mixed society

• Characteristics of agent society

• Prescriptive norm: Mask-wearing mandate

• Different distribution of social value orientation among agents

• Agents’ health states and the chosen action determine the payoff
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Fleur: Metrics

• Compliance

• MCompliance: The percentage of agents who satisfy the existing norm

• Social Experience

• MSocial Experience: The total payoff of the agents in a society

• Invalidation

• MInvalidation: The percentage of agents who do not meet their

preferences in a society
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Fleur: Hypotheses

• HCompliance: Social value orientation positively affects norm

compliance with prosocial norms

• HSocial Experience: The distribution of social value orientation

positively affects social experiences in a society

• HInvalidation: Social value orientation negatively affects the tendency

to meet personal preference and social experiences

Tests for Statistical Significance

• Independent t-test

• Glass’s ∆
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Result: Prosocial and Altruistic agents societies have higher

compliance. A competitive infected agent may choose not to

wear a mask when interacting with other healthy agents, leading

to lower compliance in the mixed society

Compliance: % of agents who satisfy the existing norm

Smixed Saltruistic Sprosocial Sselfish Scompetitive

Compliance 63.40% 69.70% 70.25% 65.10% 54.08%
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Result: The mixed society has similar results as the selfish so-

ciety. Whereas 50% of the mixed-agent society agents are

altruistic and prosocial agents, the 25% of competitive agents

would choose to minimize others’ payoff without hurting their

self-interests

Social Experience: The total payoff of the agents in a society

Smixed Saltruistic Sprosocial Sselfish Scompetitive

Social Experience 0.448 0.554 0.566 0.470 0.221
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Result: The selfish and competitive agents in the mixed society

decreased the invalidation

Invalidation: % of agents who do not meet their preferences in a society

Smixed Saltruistic Sprosocial Sselfish Scompetitive

Invalidation 0.296 0.334 0.323 0.269 0.289
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Fleur: Summary

Study Summary

Incorporating Social Value Orientation enables better social expe-

rience and robust norm emergence

• Aligning with social preferences enables AI to make ethical decisions

and be responsible for human needs

• Altruistic and prosocial agents adhere to the prosocial norm and

enjoy more positive social experiences at the cost of themselves

• Policy makers may define appropriate sanctions to motivate the

competitive and selfish agents to follow the norms
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Exanna: Decision and Rationale

with Values



Exanna: Scenario

Source: https://www.latimes.com/opinion/story/2022-08-07/mask-wearing-public-anger-comic
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Exanna: Introduction and Motivation

• Motivations

• Agents provides rationales for their decisions would be interpretable

and reliable

• Justifying behavior via revealing information can resolve social

conflict and enhance individual gain

• Verbose rationales may be diverging and not convincing, leading to

information overload

• Invaded or uncomfortable feelings for privacy breaches

• Rationales or information aligned with values best justify one’s

behaviors
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Exanna: Objective and RQs

• Objective: Incorporating values into behavior justification

• RQs

• RQGoal Adherence: Do value-aligned rationales increase adherence to the

original goal?

• RQConflict Resolution: Do value-aligned rationales increase the social

resolution?

• RQPrivacy Loss: Does value-aligned rationales reduce privacy loss?
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Exanna: Cognitive Framework
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Exanna: Key Concepts

• Context:

• The information that characterizes the situation of an entity

• Include observable and nonobservable attributes (keep private from

others)

• Some attributes associated with values

• Decision rule: The mapping between an observation of context and

a reasonable action, represented as if-then logic

• Format: if antecedent then consequence

{ I n f e c t i o n R i s k=No r i s k , I n t e r a c tW i t h=Co l l e ague} => Not Wear

• Rule Learning: Evolving rules from interactions or dataset

• Value preference

• A preference order over different values for one context

• Numbers in one value preference add up to 1
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Exanna: Method (1)

• Decision making

• Aggregated payoff with all corresponding values

f =
values∑

i

vi × rRxCy (1)

Agent 1:Agent 2 C1 C2

R1 rR1C1 rR1C2

R2 rR2C1 rR2C2

27



Exanna: Method (2)

• Rationale Generation

• Evolve and learn decision rules as the base rationale with XCS, a
learning algorithm combines reinforcement learning and genetic
algorithm

• Rule discover: Crossover and mutation creates more general or more

specific rules by randomly adding or removing factors in antecedent

• Subsume rules: Replace with a more general rule that has less

prediction error

• Action selection: Select the action with best-aggregated fitness

• Reveal necessary information in rationales

• Remove private factors that are not related to presented values from

the aggregated rules
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Exanna: Method (3)

• Rationale Evaluation

• Update beliefs based on the received rationale

• Make an analogous decision based on beliefs

• Accept the rationale if the decision matches the observed action

• Otherwise, reject the rationale

• Acceptance and rejection of rationales lead to sanctions
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Exanna: Evaluation Design with COVID Simulations

• Scenario: Agents move randomly and decide whether to wear a mask

based on personal preference, health states, and value preference

• Simulate with varying agent societies: Share All, Share Decision

Rules, and Share Value-Aligned Rules society

• Characteristics of agent society

• Different strategies to explain agents’ behaviors

• Evaluate observed behaviors referring to received rationales

• Agents form goals based on values

• 50% of agents value health and 50% of agents value freedom in each

society
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Exanna: Metrics

Measures:

• Goal Adherence

• MGoal Adherence: The degree of adherence to each agent’s goal

• Conflict Resolution

• MConflict Resolution: The percentage of conflict resolution in society

• Social Experience

• MSocial Experience: The aggregation of payoff an agent receives for its

behavior

• Privacy Loss

• MPrivacy Loss: The proportion of hidden information shared during an

interaction
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Exanna: Hypotheses

• HGoal Adherence: Exanna provides higher goal adherence than baseline

societies

• HConflict Resolution: Exanna provides higher conflict resolution than

baseline societies

• HSocial Experience: Exanna provides better social experience than

baseline societies

• HPrivacy Loss: Exanna takes lower privacy loss compared to baseline

societies

Tests for Statistical Significance

• Independent t-test

• Glass’s ∆
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Results: Exanna Yields Less Privacy Loss When Providing Ra-

tionale

Share-all Share-rules Exanna
Society

0.8

0.9

1.0

Pr
iv

ac
y 

Lo
ss

33



Results: Exanna Has Higher Conflict Resolution in Cases Where

Agents Deviate from their Goals

Exanna trades goal adherence for conflict resolution
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Results: Exanna Yields Better Social Experience and Conflict

Resolution at the Expense of Goal Adherence
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Results: Exanna Yields Lower Goal Adherence than Other So-

cieties

• Exanna generates lower goal adherence than Share-Decision Rules

society For less convincingness from being conservative

• Share All society has lower goal adherence than Share-Decision

Rules society for distraction from information overload
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Exanna: Summary

Study Summary

Providing rationales with the concerns of value preferences leads

to (1) deviation from goals, (2) higher conflict resolution, (3) less

private loss, and (4) better social experience

• Value-aligned explanations ensure the AI system’s decisions are

consistent with human values

• Highlight what an agent cares

• No unnecessary sacrifice of private attributes
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Conclusion

• Considering human factors leads to higher social experience in terms

of a single agent

• Regarding MAS, Considering human factors promotes cooperation
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Future Directions

• Going deeper into understanding the causal connections that exist

between decisions and human factors

• Investigate how different costs of information influence decisions for

more precise and reliable action suggestions and rationale

construction

• Information suppression may be acceptable in some cases

• Having agents decide what to share and when to share increases

strategies’ flexibility

• Investigate the relationship between social norms and different social

signals
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General Reproducibility Details

Hardware:

• 32 GB RAM

• GPU NVIDIA GTX 1070 Ti

Framework:

• MASON (Java)

• Mesa (Python)



Noe: Enforcing Social Norms

with Expressed Emotions



Noe: Introduction and Motivation

Source: https://www.shutterstock.com/image-illustration/3d-smart-red-man-jumps-queue-134805779

• Motivation:

• Sanctions in real world are usually subtle

• General thinking and problem-solving incorporate the influence of

emotions (Simon, 1967)

• Objective: Incorporate expressed emotions in decision-making

• RQemotion: How does modeling the emotional responses of agents to

the outcomes of interactions affect the emergence of norms and

social welfare?



Noe: Cognitive Framework

Emotion ModelCognitive Model

Belief
Desire

Intention

Appraisal

Emotion

Decision Module

Social Model

Normative
Reasoning

Norm
Fullfilment

World Model

Context

Social 
Values

Personal
Values

Knowledge

Action Explanation



Noe: Evaluation with Line-Up Simulations

• Simulate with varying agent societies: Obedient, Anarchy,

Sanctioning and Noe society

• Appraisal: Based on norm satisfaction or violation

• Characteristics of agent society

• Prescriptive norm: Line up to get service

• Sanctions and expressed emotions that emerge from the evaluation

of chosen actions

• Expressed emotions serve as intrinsic reward (self-directed emotion)

and extrinsic reward (other-directed emotion)
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Noe: Metrics

Measures:

• Social welfare

• MDeceased: Cumulative number of agents deceased

• MHealth: Average health of the agents

• Norm satisfaction

• MCohesion: Proportion of norm instances that are satisfied

• Social experience

• MWaiting time: Average waiting time of agents in the queues



Noe: Simulation Results

Obedient Anarchy Sanctioning Noe

M
D
ec
ea
se
d

X̄ 55.30 81.60 169.30 54.00

p-value <0.01 <0.01 <0.01 –

∆ 0.65 3.10 15.53 –

M
H
ea
lt
h X̄ 79.27 79.50 86.26 79.00

p-value 0.52 0.46 8.45 –

∆ 0.18 0.21 3.34 –

M
C
o
h
es
io
n

X̄ – 0.22 0.88 0.99

p-value – <0.01 <0.01 –

∆ – 102.43 13.67 –

M
W
a
it
in
g
T
im

e

X̄ 8.95 5.45 2.55 8.95

p-value 0.98 <0.01 <0.01 –

∆ 0.01 40.82 76.68 –



Results: Fewer Agents Die in Noe than in Other Societies

Metric: Cumulative number of agents deceased



Results: Sanctioning Society Yields Higher Health State

. . . But at the Expense of More Deaths

Metric: Average health state of the agents



Results: Noe Yields Higher Cohesion than Other Agent Soci-

eties

Metric: Cohesion (Proportion of norm instances that are satisfied)



Results: Noe Has Similar Waiting Time as Obedient Society

Metric: Average waiting time of agents in the queues



Noe: Summary

Study Summary

Agents who incorporate expressed emotions are more willing to

comply with norms than those who do not

• Expressed emotions act as a positive or negative reinforcement

mechanism for specific behaviors

• Noe enables the incorporation of expressed emotions as sanctions in

decision-making



Ness: Normative Information

from Tell and Hint



Ness: Scenario

When there’s a norm of not wearing a mask . . .

Source: https://www.latimes.com/opinion/story/2022-08-07/mask-wearing-public-anger-comic



Ness: Introduction and Motivation

• Motivations

• Social signals are reactions to norm satisfaction or norm violation

• Social signals provide natural drivers for norm emergence

• Normative information conveyed through a social signal promotes

cooperation in MAS

• Social signals can be realized in three main ways: sanction, tell, and

hint

• Objective: Incorporate normative information from social signals into

decision-making

• RQinformation: How does considering soft signals such as hints and tell

in addition to sanctions influence norm emergence?



Ness: Cognitive Framework
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Ness: Key Concepts

• Reward Shaping (Ng et al., 1999) provides additional “shaping”

reward from deterministic reward function

r ′final = r + F

where r is the standard reward function in reinforcement learning

and F is the shaping reward function

• With messages or hints, F defines the difference of potential values

F (s, a, s ′, a′) = γΦ(s ′, a′)κ− Φ(s, a)

where Φ is a potential function that gives hints on states. κ defines

the certainty of potential reward from the knowledge or information



Ness: Evaluation with COVID Simulations

• Simulate with varying agent societies: Primitive, Sanction, Hint,

Tell, and Ness society

• Characteristics of agent society

• A combination of three kinds of social signals

• Prescriptive norm: Stay self-quarantine if infected

• Sanction (Material punishment): Send to forced quarantine at a low

probability

Stay home
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Ness: Disease Model

Susceptible-Exposed-Infected-Recovered-Vaccinated (SEIRV)

model (Yang and Wang, 2020; Annas et al., 2020)

Susceptible 
(S)

Exposed (E) Infectious (I)

Recovered
 (R)

Vaccinated 
(V)

0.8?

0.35?

Deceased0.2?

• α controls the probability to be infected based on vaccination

• β controls the recovering rate based on agent activity

• Healthy agents, cover susceptible, exposed and recovered, are not infected

• Infectious includes three subclasses: Asymptomatic, mildly symptomatic, and

critical symptomatic



Ness: Agent Societies

Society Sanctioning Shaping Reward Emotion

Baseline 1. Primitive ✗ ✗ ✗

Baseline 2. Sanction ✓ ✗ ✗

Baseline 3. Tell ✓ ✓ ✗

Baseline 4. Hint ✓ ✗ ✓

Ness ✓ ✓ ✓

Shaping Rewards come from normative information



Ness: Information Balance

Societies: Signals Sanction Tell Hint Hint w/ shaping reward

Primitive 0% 0% 0% 0%

Sanction 38% 0% 0% 0%

Tell 20% 36% 0% 0%

Hint 20% 0% 12% 0%

Ness 20% 0% 0% 10%

• More learning channels improve learning efficiency

• We balance the information an agent can access by adjusting the

expected payoff to achieve comparability



Ness: Metrics

• Disease control

• MHealthy: The percentage of agents who are healthy

• MInfected: The percentage of agents who are infected

• MDeceased: The percentage of who are deceased

• MTotal infections: Total number of infections in societies

• MVaccinated: Percentage of vaccinated agents

• Goal

• MGoal: The average goal satisfaction among agents

• Isolation

• MIsolation: The percentage of self-isolation among infected agents
• MForced quarantine:

• Number of agents who are forced to quarantine at home

• This measure maps to the sanction signal type



Results: Ness Yields Better Disease Control and Higher Vacci-

nation Rate



Results: Ness Yields Better Goal Satisfaction Than Tell, Sanc-

tion, and Primitive Societies



Results: Ness and Noe Yield Higher Norm-Compliance and

Lower Forced Quarantine than Other Societies



Ness: Detailed Results (1)

Primitive Sanction Hint Tell Ness

H
D
is
ea
se

co
n
tr
o
l

MInfected 13.281 2.634 0.411 4.205 0.157

∆ −0.973 −0.271 0.085 −0.330 –

MHealthy 46.294 77.602 96.622 65.082 98.750

∆ 18.259 3.414 0.776 4.784 –

MDeceased 41.034 19.764 2.967 30.713 1.093

∆ −3.346 −6.123 −7.450 −5.316 –

MInfections 48.335 13.840 2.221 20.474 0.891

∆ −2.664 −6.925 −10.730 −5.842 –

MVaccinated 82.452 36.743 11.185 37.430 98.734

∆ 1.518 18.181 143.254 13.261 –



Ness: Detailed Results (2)

Primitive Sanction Hint Tell Ness

H
Is
o
la
ti
o
n

MIsolation 0.610 0.965 0.993 0.934 0.998

∆ 1.777 0.326 0.101 0.450 –

MForced quarantine – 0.026 8.5e − 04 0.040 1.75e − 04

p-value – <0.001 < 0.01 <0.001 –

∆ – −0.268 −0.075 −0.313 –

H
G
o
a
l MGoal 0.187 0.262 0.321 0.227 0.311

∆ 3.128 3.445 −1.012 3.929 –



Ness: Summary

Study Summary

Ness agents effectively avoid undesirable results and yield higher

satisfaction than baseline agents despite requiring an equivalent

amount of information

• Normative information from soft signals like hints and messages

helps to regulate behaviors

• Incorporating normative information from social signals supports

norm emergence



Ness: Hyperparameters

Parameter Value Comment

Learning rate α 0.001

Discount factor γ 0.900

Simulation step per action 1.000

Infection % 0.300 The default fraction of infected

agents in a society

Certainty of potential reward 0.300 value for κ for certainty of pos-

sible sanctions from normative

information through hints

Certainty of potential reward 0.500 value for κ for certainty of pos-

sible sanctions from normative

information messages



Fleur: Detailed Results (1)

Compliance Social Experience Invalidation

Smixed X̄ 63.40% 0.448 0.296

p-value – – –

∆ – – –

Saltruistic X̄ 69.70% 0.554 0.334

p-value < 0.001 < 0.001 < 0.001

∆ 0.660 0.612 0.464

Sprosocial X̄ 70.25% 0.566 0.323

p-value < 0.001 < 0.001 < 0.05

∆ 0.718 0.677 0.326



Fleur: Detailed Results (2)

Compliance Social Experience Invalidation

Sselfish X̄ 65.10% 0.469 0.269

p-value 0.218 0.424 < 0.05

∆ 0.178 0.122 0.329

Scompetitive X̄ 54.08% 0.221 0.289

p-value < 0.001 < 0.001 0.541

∆ 0.977 1.313 0.088



Fleur: Hyperparameters

Parameter Value

Population size 40

Simulation step per action 1

Training steps 500,000

Evaluation steps 100

Learning rate α 0.001

Discount factor γ 0.9



Exanna: Processes of XCS

• Matching: A process that matches the current context and all

rules/classifiers to generate a match set

• Covering: A process that guarantees diversity via adding a random

classifier whose conditions match the current context

• Action selection: This process returns the action with the highest

fitness-weighted aggregation of reward if in exploitation mode

• Formation of action set: The action set includes all classifiers that

propose the chosen action based on the match set

• Updating classifier parameters: An agent updates the rule

parameters (e.g., accuracy and fitness) based on the received payoff

• Subsumption: A process that replaces offspring rules with more

general parent rules if it exists and with a minor prediction error

• Deletion: Each action set has the same maximum number of rules

and XCS removes the low-fitness rules



Exanna: Hyperparameters

Parameter Value

Population size 200

Learning rate 0.1

Don’t care probability 0.3

Accuracy threshold 0.01

Fitness exponent 5

Genetic algorithm threshold 25

Mutation probability 0.4

Crossover probability 0.8

Experience threshold for deletion 20

Experience threshold for subsumption 20

Fitness falloff 0.1



Exanna: Detailed Results

Share All Share Decision Rules Exanna

MGoal Adherence X̄ 0.901 0.914 0.885

p-value 0.083 < 0.01 –

∆ −1.594 −2.891 –

MConflict resolution X̄ 0.585 0.582 0.604

p-value < 0.001 < 0.001 –

∆ 1.803 3.106 –

MSocial Experience X̄ 0.591 0.624 0.699

p-value < 0.001 < 0.001 –

∆ 1.803 3.106 –

MPrivacy Loss X̄ 1.000 0.999 0.749

p-value < 0.001 < 0.001 –

∆ ∞ −11,896.523 –



Exanna: Goal Adherence by Agent Types
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Exanna: Payoff of Actors by Agent Types
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Exanna: Payoff of Observers by Agent Types
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